β-Pinene moderates Cr(VI) phytotoxicity by quenching reactive oxygen species and altering antioxidant machinery in maize

Abstract

We examined the possible role of monoterpene β-pinene in providing protection against Cr(VI) toxicity in maize (Zea mays). Treatment with β-pinene (10 μM) significantly alleviated Cr(VI) accumulation and recuperated Cr(VI) caused decline in root and coleoptile growth in maize. β-Pinene addition caused a decline in Cr(VI)-induced accumulation of superoxide anion, hydroxyl ion, hydrogen peroxide and confirmed by in-situ detection of ROS using histochemical localization. It suggested that the β-pinene quenches/neutralizes enhanced ROS generated under Cr(VI) exposure. β-Pinene also reduced Cr(VI)-induced electrolyte leakage, thereby suggesting its role in membrane stabilization. Further, β-pinene regulated the activity of scavenging enzymes, thereby suggesting a role in modulating Cr(VI)-induced oxidative damage. In conclusion, our results suggest that the addition of β-pinene has a protective role against Cr(VI) stress and provides resistance to maize against Cr(VI) toxicity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    CAS  Article  Google Scholar 

  2. Agarwal A, Singh HP, Rai JPN (2014) Chromium phytoextraction from tannery effluent-contaminated soil by Crotalaria juncea infested with Pseudomonas fluorescens. Env Sci Pollut Res 21:7938–7944

    CAS  Article  Google Scholar 

  3. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    CAS  Article  Google Scholar 

  4. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286

    CAS  Article  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  6. Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    CAS  Article  Google Scholar 

  7. Casano L, Gomez L, Lascano C, Trippi V (1997) Inactivation and degradation of Cu/ZnSOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol 38:433–440

    CAS  Article  Google Scholar 

  8. Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr(VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    CAS  Article  Google Scholar 

  9. Chowhan N, Singh HP, Batish DR, Kaur S, Ahuja N, Kohli RK (2013) β-Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma 250(3):691–700

    CAS  Article  Google Scholar 

  10. Chowhan N, Singh HP, Batish DR, Kohli RK (2011) Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiol Plant 3:2369–2376

    Article  Google Scholar 

  11. da Conceição Gomes MA, Hauser-Davis RA, Suzuki MS, Vitória AP (2017) Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Safe 140:55–64

    Article  Google Scholar 

  12. del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  Google Scholar 

  13. Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    CAS  Article  Google Scholar 

  14. Dudareva N, Negre F, Nagegowda AD, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    CAS  Article  Google Scholar 

  15. Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232

    CAS  Article  Google Scholar 

  16. Farquharson KL (2017) Secrets of the forest: volatiles first discovered in pine trees propagate defense signals within and between plants. Plant Cell 29:1181–1182

    CAS  Google Scholar 

  17. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    CAS  Article  Google Scholar 

  18. Geron C, Ramussen R, Arnts RR, Guenther A (2000) A review and synthesis of monoterpene speciation from forests in the United States. Atmos Environ 34:1761–1781

    CAS  Article  Google Scholar 

  19. Godard KA, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849

    CAS  Article  Google Scholar 

  20. Halliwell B, Gutteridge JMC, Auroma O (1987) The deoxyribose method: a simple ‘test tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Ann Biochem 165:215–219

    CAS  Article  Google Scholar 

  21. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  Google Scholar 

  22. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:1360–1385

    Article  Google Scholar 

  23. Kaszycki P, Gabrys H, Appenroth KJ, Jaglarz A, Sedziwy S, Walczak T, Koloczek H (2005) Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza. Plant Cell Environ 28:260–268

    CAS  Article  Google Scholar 

  24. Kim YJ, Kim JH, Lee CE, Mok YG, Choi JS, Shin HS, Hwang S (2006) Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Letters 580 (1):206–210

    CAS  Article  Google Scholar 

  25. Kriegs B, Jansen M, Hahn K, Peisker H, Šamajová O, Beck M, Braun S, Ulbrich A, Baluška F, Schulz M (2010) Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype: effect on the cytoskeleton and on the expression of selected genes. Plant Signal Behav 5(7):832–838

    CAS  Article  Google Scholar 

  26. Lee K, Seo PJ (2014) Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants. Plant Signal Behav 9(3):e28392

  27. López-Bucio J, Hernández-Madrigal F, Cervantes C, Ortiz-Castro R, Carreón-Abud Y, Martínez-Trujillo M (2014) Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. BioMetals 27:363–370

    Article  Google Scholar 

  28. Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    CAS  Article  Google Scholar 

  29. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    CAS  Article  Google Scholar 

  30. Mahajan P, Batish DR, Singh HP, Kohli RK (2013) Cr(VI) imposed toxicity in maize seedlings assessed in terms of disruption in carbohydrate metabolism. Biol Trace Elem Res 156:316–322

    CAS  Article  Google Scholar 

  31. Mahajan P, Batish DR, Singh HP, Kohli RK (2016) β-Pinene partially ameliorates Cr(VI)-inhibited growth and biochemical changes in emerging seedlings. Plant Growth Regul 79:243–249

    CAS  Article  Google Scholar 

  32. Medda S, Mondal NK (2017) Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann Agrar Sci 15:396–401

    Article  Google Scholar 

  33. Misra HR, Fridovich I (1972) The univalent reduction of oxygen by reduced flavins and quinines. J Biol Chem 247:188–192

    CAS  Google Scholar 

  34. Mondal MH, Malik S, Garain A, Mandal S, Saha B (2017) Extraction of natural surfactant saponin from soapnut (Sapindus mukorossi) and its utilization in the remediation of hexavalent chromium from contaminated water. Tenside Surfact Det 54:519–525

    CAS  Article  Google Scholar 

  35. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  36. Peñuelas J, Llusià J, Asensio D, Munne-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ 28:278–286

    Article  Google Scholar 

  37. Pham QD, Topgaard D, Sparr E (2015) Cyclic and linear monoterpenes in phospholipid membranes: phase behavior, bilayer structure, and molecular dynamics. Langmuir 31(40):11067–11077

    CAS  Article  Google Scholar 

  38. Pompella A, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Arch Amer J Pathol 129:295–301

    CAS  Google Scholar 

  39. Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, Dey S, Parker JE, Schnitzler J-P, Vlot C (2017) Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29:1440–1459

    CAS  Google Scholar 

  40. Rodriguez MC, Barsanti L, Passarelli V, Evangelista V, Conforti V, Gualtieri P (2007) Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ Res 105:234–239

    CAS  Article  Google Scholar 

  41. Sayantan D, Shardendu S (2013) Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L as assayed by antioxidant enzymes activities. Ecotoxicol Environ Safe 95:161–170

    CAS  Article  Google Scholar 

  42. Schiavon M, Pilon-Smits E, Wirtz M, Hell R, Malagoli M (2008) Interactions between chromium and sulfur metabolism in Brassica juncea. J Environ Qual 37:1536–1545

    CAS  Article  Google Scholar 

  43. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

  44. Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383

    CAS  Article  Google Scholar 

  45. Sharkey TD, Wiberley AE, Donohue AR (2007) Isoprene emissions from plants: why and how. Ann Bot 101:5–18

    Article  Google Scholar 

  46. Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    CAS  Article  Google Scholar 

  47. Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    CAS  Article  Google Scholar 

  48. Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium(VI) toxicity in legume plants: modulation effects of rhizobial rymbiosis. BioMed Res Int 2018: article ID 8031213, 13 pages

  49. Thordal CH, Zhang Z, Wei Y, Collinge DB (1997) Subcelluar localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  Google Scholar 

  50. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    CAS  Article  Google Scholar 

  51. Vickers C, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Hewitt CN (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    CAS  Article  Google Scholar 

  52. Vimercati L, Gatti MF, Gagliardi T, Cuccaro F, De Maria L, Caputi A, Quarato M, Baldassarre A (2017) Environmental exposure to arsenic and chromium in an industrial area. Environ Sci Pollut Res Int 24:11528–11535

    CAS  Article  Google Scholar 

  53. Wang T-T, Shi ZQ, Hu L-B, Xu X-F, Han FX, Zhou L-G, Chen J (2017) Thymol ameliorates cadmium-induced phytotoxicity in the root of rice (Oryza sativa) seedling by decreasing endogenous nitric oxide generation. J Agric Food Chem 65:7396–7405

    CAS  Article  Google Scholar 

  54. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    CAS  Article  Google Scholar 

  55. Zeng F, Qiu B, Wu X, Niu S, Wu F, Zhang G (2012) Glutathione-mediated alleviation of chromium toxicity in rice plants. Biol Trace Elem Res 148:255–263

    CAS  Article  Google Scholar 

  56. Zeng F-R, Zhao F-S, Qiu B-Y, Ouyang Y-N, Wu F-B, Zhang G-P (2011) Alleviation of chromium toxicity by silicon addition in rice plants. Agric Sci China 10(8):1188–1196

    CAS  Article  Google Scholar 

Download references

Acknowledgements

PM is thankful to University Grants Commission, New Delhi, India, for research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harminder Pal Singh.

Additional information

Responsible editor: Yi-ping Chen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahajan, P., Singh, H.P., Kaur, S. et al. β-Pinene moderates Cr(VI) phytotoxicity by quenching reactive oxygen species and altering antioxidant machinery in maize. Environ Sci Pollut Res 26, 456–463 (2019). https://doi.org/10.1007/s11356-018-3562-1

Download citation

Keywords

  • Monoterpenes
  • Hexavalent chromium
  • Oxidative damage
  • Free radicals
  • Stress amelioration