Analysis of swale factors implicated in pollutant removal efficiency using a swale database

Abstract

Swales are traditional basic open-drainage systems which are able to remove stormwater-borne pollutants. In spite of numerous case studies devoted to their performances, parameters influencing the reduction of pollutant concentrations by swales remain elusive. In order to better characterize them, a database was set up by collecting performance results and design characteristics from 59 swales reported in the literature. Investigations on correlations among pollutant efficiency ratios (ERs) indicated that total trace metals (copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb)), total suspended solids (TSS), total phosphorus (TP), and total Kjeldahl nitrogen (TKN) exhibited many cross-correlated ERs. High ERs were observed for pollutants including a particulate form such as TSS (median ERs = 56%) and total trace metals (median ERs ≥ 62%), suggesting that these pollutants are efficiently trapped by sedimentation in swale bed and/or filtered within swale soil. Medium to high ERs were found for dissolved trace metals (median ERs ≥ 44%), whereas ERs for nutrient species were lower (median ERs ≤ 30%). The inflow concentration was identified as a major factor correlated to ER for most pollutants. For some pollutants, there is also a trend to get higher ER when the geometrical design of the swale increases the hydraulic residence time. Overall, this database may help to better understand swale systems and to optimize their design for improving pollutant removal.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahiablame LM, Engel BA, Chaubey I (2012) Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut 223:4253–4273. https://doi.org/10.1007/s11270-012-1189-2

    Article  CAS  Google Scholar 

  2. Allen D, Arthur S, Haynes H, Olive V (2017) Multiple rainfall event pollution transport by sustainable drainage systems: the fate of fine sediment pollution. Int J Environ Sci Technol 14:639–652. https://doi.org/10.1007/s13762-016-1177-y

    Article  CAS  Google Scholar 

  3. Andrés-Valeri VC, Castro-Fresno D, Sañudo-Fontaneda LA, Rodriguez-Hernandez J (2014) Comparative analysis of the outflow water quality of two sustainable linear drainage systems. Water Sci Technol 70:1341–1347. https://doi.org/10.2166/wst.2014.382

    Article  CAS  Google Scholar 

  4. Bäckström M (2002) Sediment transport in grassed swales during simulated runoff events. Water Sci Technol 45:41–49. https://doi.org/10.2166/wst.2002.0115

    Article  Google Scholar 

  5. Bäckström M, Viklander M, Malmqvist P-A (2006) Transport of stormwater pollutants through a roadside grassed swale. Urban Water J 3:55–67. https://doi.org/10.1080/15730620600855985

    Article  CAS  Google Scholar 

  6. Barrett ME (2005) Performance comparison of structural stormwater best management practices. Water Environ Res 77:78–86. https://doi.org/10.2175/106143005X41654

    Article  CAS  Google Scholar 

  7. Barrett ME (2008) Comparison of BMP performance using the international BMP database. J Irrig Drain Eng 134:556–561. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(556)

    Article  Google Scholar 

  8. Béchet B, Durin B, Legret M, Le Cloirec P (2009) Size fractionation of heavy metals in highway runoff waters. Rauch S, Morrison GM, Monzón A (eds) Highway and urban environment. Alliance for Global Sustainability Bookseries (Science and Technology: Tools for Sustainable Development), vol 17. Springer, Dordrecht

    Google Scholar 

  9. Beenen AS, Boogaard FC (2007) Lessons from ten years storm water infiltration in the Dutch Delta. Novatech, Lyon, pp 1139–1146

    Google Scholar 

  10. Boger A, Ahiablame L, Mosase E, Beck D (2018) Effectiveness of roadside vegetated filter strips and swales at treating roadway runoff: a tutorial review. Environ Sci-Wat Res. https://doi.org/10.1039/C7EW00230K

  11. Caltrans (2004) BMP retrofit pilot program. Division of environmental analysis, California Department of Transportation, Sacramento, CA

  12. Cederkvist K, Jensen M, Ingvertsen S, Holm P (2016) Controlling stormwater quality with filter soil—event and dry weather testing. Water 8:349. https://doi.org/10.3390/w8080349

    Article  CAS  Google Scholar 

  13. Clar ML, Barfield BJ, O’Connor TP (2004) Stormwater best management practice design guide volume 2 Vegetative biofilters. National Risk Management Research Laboratory. Office of Research and Development. U.S. Environmental Protection Agency, Cincinnati, OH

  14. Clary J, Jones J, Leisenring M, et al (2017) International Stormwater BMP database: 2016 summary statistics. Water Environment & Reuse Foundation

  15. Credit Valley Conservation, the Toronto and Region Conservation Authority (2010) Low impact development stormwater management planning and design guide, version 1.0

  16. Deletic A (1999) Sediment behaviour in grass filter strips. Water Sci Technol 39:129–136. https://doi.org/10.2166/wst.1999.0459

    Article  Google Scholar 

  17. Deletic A, Fletcher TD (2006) Performance of grass filters used for stormwater treatment—a field and modelling study. J Hydrol 317:261–275. https://doi.org/10.1016/j.jhydrol.2005.05.021

    Article  Google Scholar 

  18. Dierkes C, Göbel P, Benze W, Wells J (2000) Next generation water sensitive storm water management techniques. 2nd National Conference on Water Sensitive Urban Design (2–4 September 2000), Brisbane

  19. Djukić A, Lekić B, Rajaković-Ognjanović V et al (2016) Further insight into the mechanism of heavy metals partitioning in stormwater runoff. J Environ Manag 168:104–110. https://doi.org/10.1016/j.jenvman.2015.11.035

    Article  CAS  Google Scholar 

  20. Drapper D, Tomlinson R, Williams P (2000) Pollutant concentrations in road runoff: Southeast Queensland case study. J Environ Eng 126:313–320. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:4(313)

    Article  CAS  Google Scholar 

  21. Ellis JB, Revitt DM, Lundy L (2012) An impact assessment methodology for urban surface runoff quality following best practice treatment. Sci Total Environ 416:172–179. https://doi.org/10.1016/j.scitotenv.2011.12.003

    Article  CAS  Google Scholar 

  22. Erickson AJ, Weiss PT, Gulliver JS (2013) Optimizing stormwater treatment practices. Springer, New York

    Google Scholar 

  23. Evans Z, Van Ryswyk H, Los Huertos M, Srebotnjak T (2019) Robust spatial analysis of sequestered metals in a Southern California Bioswale. Sci Total Environ 650:155–162. https://doi.org/10.1016/j.scitotenv.2018.08.441

    Article  CAS  Google Scholar 

  24. Fassman E (2012) Stormwater BMP treatment performance variability for sediment and heavy metals. Sep Purif Technol 84:95–103. https://doi.org/10.1016/j.seppur.2011.06.033

    Article  CAS  Google Scholar 

  25. Gasperi J, Sebastian C, Ruban V et al (2014) Micropollutants in urban stormwater: occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments. Environ Sci Pollut Res 21:5267–5281. https://doi.org/10.1007/s11356-013-2396-0

    Article  CAS  Google Scholar 

  26. Geosyntec Consultants, Wright Water Engineers (2011) International Stormwater Best Management Practices (BMP) Categorical Summary of BMP Performance Data for Metals Contained in the International Stormwater BMP Database. Water Environment Research Foundation, Federal Highway Administration Environment and Water Resources Institute of the American Society of Civil Engineers

  27. Gromaire-Mertz M-C, Garnaud S, Gonzalez A, Chebbo G (1999) Characterisation of urban runoff pollution in Paris. Water Sci Technol 39:1–8. https://doi.org/10.2166/wst.1999.0071

    Article  CAS  Google Scholar 

  28. Hamel P, Daly E, Fletcher TD (2013) Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: a review. J Hydrol 485:201–211. https://doi.org/10.1016/j.jhydrol.2013.01.001

    Article  Google Scholar 

  29. Hood A, Chopra M, Wanielista M (2013) Assessment of biosorption activated media under roadside swales for the removal of phosphorus from stormwater. Water 5:53–66. https://doi.org/10.3390/w5010053

    Article  CAS  Google Scholar 

  30. Huber M, Helmreich B (2016) Stormwater management: calculation of traffic area runoff loads and traffic related emissions. Water 8:294. https://doi.org/10.3390/w8070294

    Article  CAS  Google Scholar 

  31. Huber M, Welker A, Helmreich B (2016) Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors, and partitioning. Sci Total Environ 541:895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033

    Article  CAS  Google Scholar 

  32. Hvitved-Jacobsen T, Vollertsen J, Nielsen AH (2010) Urban and highway stormwater pollution: concepts and engineering. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  33. Ingvertsen ST, Jensen MB, Magid J (2011) A minimum data set of water quality parameters to assess and compare treatment efficiency of stormwater facilities. J Environ Qual 40:1488. https://doi.org/10.2134/jeq2010.0420

    Article  CAS  Google Scholar 

  34. Ingvertsen ST, Cederkvist K, Jensen MB, Magid J (2012) Assessment of existing roadside swales with engineered filter soil: II. Treatment efficiency and in situ mobilization in soil columns. J Environ Qual 41:1970. https://doi.org/10.2134/jeq2012.0116

    Article  CAS  Google Scholar 

  35. Jiang C, Li J, Li H et al (2017) Field performance of bioretention systems for runoff quantity regulation and pollutant removal. Water Air Soil Pollut 228(468). https://doi.org/10.1007/s11270-017-3636-6

  36. Johnson PD, Clark S, Pitt R, et al (2003) Metals removal technologies for stormwater. Industrial waster conference, WEF, San Antonio, pp 739–763

  37. Kayhanian M (2012) Trend and concentrations of legacy lead (Pb) in highway runoff. Environ Pollut 160:169–177. https://doi.org/10.1016/j.envpol.2011.09.009

    Article  CAS  Google Scholar 

  38. Kayhanian M, Fruchtman BD, Gulliver JS et al (2012) Review of highway runoff characteristics: comparative analysis and universal implications. Water Res 46:6609–6624. https://doi.org/10.1016/j.watres.2012.07.026

    Article  CAS  Google Scholar 

  39. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  40. Larcombe M (2003) Removal of stormwater contaminants using grass swales. Auckland region council, Auckland

    Google Scholar 

  41. Lau S-L, Stenstrom MK (2005) Metals and PAHs adsorbed to street particles. Water Res 39:4083–4092. https://doi.org/10.1016/j.watres.2005.08.002

    Article  CAS  Google Scholar 

  42. Lee H, Swamikannu X, Radulescu D et al (2007) Design of stormwater monitoring programs. Water Res 41:4186–4196. https://doi.org/10.1016/j.watres.2007.05.016

    Article  CAS  Google Scholar 

  43. Leecaster MK, Schiff K, Tiefenthaler LL (2002) Assessment of efficient sampling designs for urban stormwater monitoring. Water Res 36:1556–1564. https://doi.org/10.1016/S0043-1354(01)00353-0

    Article  CAS  Google Scholar 

  44. LeFevre GH, Paus KH, Natarajan P et al (2014) Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells. J Environ Eng 141:04014050. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000876

    Article  Google Scholar 

  45. Legret M, Pagotto C (1999) Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ 235:143–150. https://doi.org/10.1016/S0048-9697(99)00207-7

    Article  CAS  Google Scholar 

  46. Leroy M-C, Portet-Koltalo F, Legras M et al (2016) Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Sci Total Environ 566–567:113–121. https://doi.org/10.1016/j.scitotenv.2016.05.027

    Article  CAS  Google Scholar 

  47. Leroy MC, Marcotte S, Legras M et al (2017) Influence of the vegetative cover on the fate of trace metals in retention systems simulating roadside infiltration swales. Sci Total Environ 580:482–490. https://doi.org/10.1016/j.scitotenv.2016.11.195

    Article  CAS  Google Scholar 

  48. Li J, Davis AP (2016) A unified look at phosphorus treatment using bioretention. Water Res 90:141–155. https://doi.org/10.1016/j.watres.2015.12.015

    Article  CAS  Google Scholar 

  49. Li J, Jiang C, Lei T, Li Y, (2016) Experimental study and simulation of water quality purification of urban surface runoff using non-vegetated bioswales. Ecol Eng 95:706-713. https://doi.org/10.1016/j.ecoleng.2016.06.060

  50. Lucke T, Mohamed M, Tindale N (2014) Pollutant removal and hydraulic reduction performance of field grassed swales during runoff simulation experiments. Water 6:1887–1904. https://doi.org/10.3390/w6071887

    Article  CAS  Google Scholar 

  51. Makepeace DK, Smith DW, Stanley SJ (1995) Urban stormwater quality: summary of contaminant data. Crit Rev Environ Sci Technol 25:93–139. https://doi.org/10.1080/10643389509388476

    Article  CAS  Google Scholar 

  52. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://doi.org/10.1214/aoms/1177730491

    Article  Google Scholar 

  53. Mazer G, Booth D, Ewing K (2001) Limitations to vegetation establishment and growth in biofiltration swales. Ecol Eng 17:429–443. https://doi.org/10.1016/S0925-8574(00)00173-7

    Article  Google Scholar 

  54. McCarthy DT, Zhang K, Westerlund C et al (2018) Assessment of sampling strategies for estimation of site mean concentrations of stormwater pollutants. Water Res 129:297–304. https://doi.org/10.1016/j.watres.2017.10.001

    Article  CAS  Google Scholar 

  55. Morquecho R, Pitt R, Clark SE (2005) Pollutant associations with particulates in stormwater. Proceeding of the water environment federation, WEFTEC. World Water & Environmental Resources Congress, ASCE/EWRI (May 15–19, 2005), Anchorage, AK, pp 4973–4999

  56. Mosley LM, Peake BM (2001) Partitioning of metals (Fe, Pb, Cu, Zn) in urban run-off from the Kaikorai Valley, Dunedin, New Zealand. N Z J Mar Freshw Res 35:615–624. https://doi.org/10.1080/00288330.2001.9517027

    Article  CAS  Google Scholar 

  57. Nara Y, Pitt RE (2006) Sediment transport in grass swales. CHI JWMM:R225–16. https://doi.org/10.14796/JWMM.R225-16

  58. Pavlineri N, Skoulikidis NT, Tsihrintzis VA (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132. https://doi.org/10.1016/j.cej.2016.09.140

    Article  CAS  Google Scholar 

  59. Petrucci G, Rioust E, Deroubaix J-F, Tassin B (2013) Do stormwater source control policies deliver the right hydrologic outcomes? J Hydrol 485:188–200. https://doi.org/10.1016/j.jhydrol.2012.06.018

    Article  Google Scholar 

  60. Powell JT (2015) Evaluating the hydrologic and water quality benefits associated with retroffiting vegetated swales with check dams. M.S. Thesis, North Carolina State University

  61. Purvis R, Winston R, Hunt W et al (2018) Evaluating the water quality benefits of a bioswale in Brunswick County, North Carolina (NC), USA. Water 10:134. https://doi.org/10.3390/w10020134

    Article  CAS  Google Scholar 

  62. Revitt M, Ellis B, Scholes L (2003) Review of the use of stormwater BMPs in Europe. DayWater project, Middlesex University, London

  63. Revitt DM, Ellis JB, Lundy L (2017) Assessing the impact of swales on receiving water quality. Urban Water J 1–7. https://doi.org/10.1080/1573062X.2017.1279187

  64. Rodriguez F, Morena F, Andrieu H, Raimbault G (2007) Introduction of innovative stormwater techniques within a distributed hydrological model and the influence on the urban catchment behaviour. Water Pract Tech 2:wpt2007048. https://doi.org/10.2166/wpt.2007.048

  65. Roseen RM, Ballestero TP, Houle JJ et al (2009) Seasonal performance variations for storm-water management systems in cold climate conditions. J Environ Eng 135:128–137. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:3(128)

    Article  CAS  Google Scholar 

  66. Sage J, Berthier E, Gromaire M-C (2015) Stormwater management criteria for on-site pollution control: a comparative assessment of international practices. Environ Manag 56:66–80. https://doi.org/10.1007/s00267-015-0485-1

    Article  Google Scholar 

  67. Sansalone JJ, Buchberger SG (1997) Partitioning and first flush of metals in urban roadway storm water. J Environ Eng 123:134–143. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)

    Article  CAS  Google Scholar 

  68. Scholes L, Revitt DM, Ellis JB (2008) A systematic approach for the comparative assessment of stormwater pollutant removal potentials. J Environ Manag 88:467–478. https://doi.org/10.1016/j.jenvman.2007.03.003

    Article  CAS  Google Scholar 

  69. Stagge JH, Davis AP, Jamil E, Kim H (2012) Performance of grass swales for improving water quality from highway runoff. Water Res 46:6731–6742. https://doi.org/10.1016/j.watres.2012.02.037

    Article  CAS  Google Scholar 

  70. Taylor GD, Fletcher TD, Wong THF et al (2005) Nitrogen composition in urban runoff—implications for stormwater management. Water Res 39:1982–1989. https://doi.org/10.1016/j.watres.2005.03.022

    Article  CAS  Google Scholar 

  71. Tedoldi D, Chebbo G, Pierlot D et al (2016) Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of sustainable urban drainage systems: a literature review. Sci Total Environ 569–570:904–926. https://doi.org/10.1016/j.scitotenv.2016.04.215

    Article  CAS  Google Scholar 

  72. Tedoldi D, Chebbo G, Pierlot D et al (2017) Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices—inter-site comparison. Sci Total Environ 579:881–892. https://doi.org/10.1016/j.scitotenv.2016.10.226

    Article  CAS  Google Scholar 

  73. Thomson NR, McBean EA, Snodgrass W, Mostrenko I (1997) Sample size needs for characterizing pollutant concentrations in highway runoff. J Environ Eng 123:1061–1065. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:10(1061)

    Article  CAS  Google Scholar 

  74. Toronto and Region Conservation Authority (2008) Performance evaluation of permeable pavement and a bioretention swale. Seneca College, King City

    Google Scholar 

  75. Urbonas BR (1994) Parameters to report with BMP monitoring data. Engineering Foundation Conference, Crested Butte, CO

  76. Wang TS, Spyridakis DE, Mar BW, Horner RR (1980) Transport deposition and control of heavy metals in highway runoff. Department of Civil Engineering, University of Washington, Seattle, WA

  77. Winston RJ, Hunt WF, Kennedy SG et al (2012a) Field evaluation of storm-water control measures for highway runoff treatment. J Environ Eng 138:101–111. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000454

    Article  CAS  Google Scholar 

  78. Winston RJ, Hunt WF, Kennedy SG, Wright JD (2012b) Evaluation of permeable friction course (PFC), roadside filter strips, dry swales, and wetland swales for treatment of highway stormwater runoff. North Carolina Department of Transportation, NC

  79. Winston RJ, Anderson AR, Hunt WF (2016) Modeling sediment reduction in grass swales and vegetated filter strips using particle settling theory J Environ Eng 04016075. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001162

  80. Woods Ballard B, Udale-Clarke H, Illman S, et al (2015) The SuDS manual. CIRIA Report C753, Ciria, London

  81. Wright Water Engineers and Geosyntec Consultants (2007) Frequently asked questions: why does the International Stormwater BMP Database Project omit percent removal as a measure of BMP performance?

  82. Yousef YA, Wanielista MP, Harper HH, et al (1985) Removal of highway contaminants by roadside swales. Civil Engineering & Environmental Science Department, University of Central Florida, Orlando, FL

  83. Yousef YA, Hvitved-Jacobsen T, Wanielista MP, Harper HH (1987) Removal of contaminants in highway runoff flowing through swales. Sci Total Environ 59:391–399. https://doi.org/10.1016/0048-9697(87)90462-1

    Article  CAS  Google Scholar 

  84. Yu SL, Kuo J-T, Fassman EA, Pan H (2001) Field test of grassed-swale performance in removing runoff pollution. J Water Resour Plan Manag 127:168–171. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:3(168)

    Article  Google Scholar 

  85. Yu J, Yu H, Xu L (2013) Performance evaluation of various stormwater best management practices. Environ Sci Pollut Res 20:6160–6171. https://doi.org/10.1007/s11356-013-1655-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Lumbroso for its linguistic support.

Funding

This work, part of the Matriochkas Project, was supported by Agence Française de la Biodiversité.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandre Fardel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of this article was revised: The original publication of this paper contains an error. Correct presentation of Equation 1 is presented in this paper.

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 1.59 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fardel, A., Peyneau, P., Béchet, B. et al. Analysis of swale factors implicated in pollutant removal efficiency using a swale database. Environ Sci Pollut Res 26, 1287–1302 (2019). https://doi.org/10.1007/s11356-018-3522-9

Download citation

Keywords

  • Swale
  • Database
  • Stormwater
  • Pollutant removal
  • Efficiency ratio
  • Design factor