Skip to main content
Log in

Adsorption of gallic acid on nanoclay modified with poly(diallyldimethylammonium chloride)

  • Alternative Adsorbent Materials for Application in Processes Industrial
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, particles of nanoclay modified with poly(diallyldimethylammonium), PDDA, namely PDDA/PGV, were obtained and characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), surface area measurement (BET surface area), measurement of zero charge point (pHPCZ), and scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS). The PDDA/PGV particles were applied as adsorbent for the removal of gallic acid (GA) from aqueous solution. The effect of various parameters, such as solution pH, contact time, adsorbent mass, and temperature, was studied. The maximum adsorption capacity of PDDA/PGV (238.45 mg g−1) was observed at pH 4 and 15 °C. The study of adsorption kinetics and isotherms revealed that the adsorption process was better fitted by pseudo-first order and Freundlich model, respectively. The obtained thermodynamic parameters indicate that the adsorption of GA is spontaneous and enthalpy-driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7:543–568

    Article  CAS  Google Scholar 

  • An J-H, Dultz S (2007) Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl Clay Sci 36:256–264

    Article  CAS  Google Scholar 

  • Assem Y, Khalaf AI, Rabia AM, Yehia AA, Zidan TA (2016) Poly(diallyldimethylammonium chloride)/clay nanocomposites: effect of molecular weight and concentration of polymer on the structural, thermal, and dielectric properties. Polym Bull 8:3015–3026

    Google Scholar 

  • Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557

    Article  CAS  Google Scholar 

  • Du S, Wang L, Xue N, Pei M, Sui W, Guo W (2017a) Polyethyleneimine modified bentonite for the adsorption of amino black 10B. J Solid State Chem 252:152–157

    Article  CAS  Google Scholar 

  • Du S, Wang L, Xue N, Wu T, Pei M, Sui W, Guo W (2017b) Cationic polymer grafted-bentonite by Ce(IV)-redox system for adsorption of the anionic dye. J Inorg Organomet Polym 27:249–256

    Article  CAS  Google Scholar 

  • Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WMZW, Yoon Yee Then YY, Teh CC (2013) Enhancement of mechanical and thermal properties of polylactic acid/polycaprolactone blends by hydrophilic nanoclay. Indian J Mater Sci 2013:1–12

    Article  Google Scholar 

  • Freundlich H (1906) Uber die adsorption in losungen (adsorption in solution). Z Phys Chem 57:384–470

    Google Scholar 

  • Friedman M, Jurgens HS (2000) Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem 48:2101–2110

    Article  CAS  Google Scholar 

  • Gadiri A, Benkhaled A, Choukchou-Braham E (2018) Equilibrium, kinetic and thermodynamic studies of copper adsorption onto poly(n-vinylpyrrolidone) modified clay. J Macromolecular Sci Part A: Pure and App Chem 55:393–400

    Article  CAS  Google Scholar 

  • Garcia-Araya JF, Beltran FJ, Alvarez P, Masa FJ (2003) Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater. Adsorption 9:107–115

    Article  CAS  Google Scholar 

  • Guggenheim S, Koster Van Groos AF (2001) Baseline studies of the clay minerals society source clays: thermal analysis. Clay Clay Miner 49:433–443

    Article  CAS  Google Scholar 

  • Han F, Xu C, Sun W-Z, Yu S-T, Xian M (2017) Effective removal of salicylic and gallic acids from single component and impurity-containing systems using an isatin-modified adsorption resin. RSC Adv 7:23164–23175

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124

    Article  CAS  Google Scholar 

  • Hsieh CL, Lin CH, Wang HE, Peng CC, Peng RY (2015) Gallic acid exhibits risks of inducing muscular hemorrhagic liposis and cerebral hemorrhage—its action mechanism and preventive strategy. Phytother Res 29:267–280

    Article  CAS  Google Scholar 

  • Ignat I, Neagu V, Bunia I, Paduraru C, Volf I, Popa VI (2011) A comparative study on adsorption of gallic acid onto polymeric adsorbents with amine functional groups. Cellul Chem Technol 45:251–256

    CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24(4):1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1362–1403

    Article  Google Scholar 

  • Leszczynska A, Pielichowski K (2008) Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim 93:677–687

    Article  CAS  Google Scholar 

  • Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007a) Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96

    Article  CAS  Google Scholar 

  • Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007b) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22

    Article  CAS  Google Scholar 

  • Liu X, Li L, Noh HM, Jeong JH, Jang K, Shin DS (2015) Controllable synthesis of uniform CaMoO4:Eu3+, M+ (M = Li, Na, K) microspheres and optimum luminescence properties. RSC Adv 5:9441–9454

    Article  CAS  Google Scholar 

  • Lu J, Wang X, Xiao C (2008) Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films. Carbohydr Polym 73:427–437

    Article  CAS  Google Scholar 

  • Michailof C, Stavropoulos GG, Panayiotou C (2008) Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresour Technol 99:6400–6408

    Article  CAS  Google Scholar 

  • Peng Y, Chen D, Ji J, Kong Y, Wan H, Yao C (2013) Chitosan-modified palygorskite: preparation, characterization and reactive dye removal. Appl Clay Sci 74:81–86

    Article  CAS  Google Scholar 

  • Powell HKJ, Taylor MC (1982) Interactions of iron(11) and iron(111) with gallic acid and its homologues: a potentiometric and spectrophotometric study. Aust J Chem 35:739–756

    Article  Google Scholar 

  • Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ Sci Pollut Res 22:16721–16731

    Article  CAS  Google Scholar 

  • Tombácz E, Tóth IY, Nesztor D, Illés E, Hajdú A, Szekeres M, Vékás L (2013) Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance. Colloids Surf A Physicochem Eng Asp 435:91–96

    Article  Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  • Unuabonah EI, Taubert A (2014) Clay–polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92

    Article  CAS  Google Scholar 

  • Vartiainen J, Tuominen M, Nattinen K (2009) Bio-hybrid nanocomposite coatings from sonicated chitosan and nanoclay. J Appl Polym Sci 116:3638–3647

    Google Scholar 

  • Wang C-C, Juang L-C, Lee C-K, Hsu T-C, Lee J-F, Chao H-P (2004) Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. J Colloid Interface Sci 280:27–35

    Article  CAS  Google Scholar 

  • Wang J, Li A, Xu L, Zhou Y (2009) Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal. J Hazard Mater 169:794–800

    Article  CAS  Google Scholar 

  • Wang X, Wang X, Zhao J, Song J, Su C, Wang Z (2018) Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa. Water Res 131:320–333

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solutions. J Sanit Eng Div Am Soc Civ Eng 89:31–60 

  • Zhang Z, Pang Q, Li M, Zheng H, Chen H, Chen K (2015) Optimization of the condition for adsorption of gallic acid by Aspergillus oryzae mycelia using Box-Behnken design. Environ Sci Pollut Res 22:1085–1094

    Article  CAS  Google Scholar 

  • Zhang W, Wu L, Du L, Yue L, Guan R, Zhang Q, Hou G, Shao R (2016) Layer-by-layer assembly modification to prepare firmly bonded Si–graphene composites for high performance anodes. RSC Adv 6:4835–4842

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FAPERJ for financial support. The authors would like to thank Bluma Guenther Soares (Instituto de Macromoléculas—UFRJ, Brazil) for the EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Amim Júnior.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celestino, G.G., Henriques, R.R., Shiguihara, A.L. et al. Adsorption of gallic acid on nanoclay modified with poly(diallyldimethylammonium chloride). Environ Sci Pollut Res 26, 28444–28454 (2019). https://doi.org/10.1007/s11356-018-3505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3505-x

Keywords

Navigation