Zinc incorporation in marine bivalve shells grown in mine-polluted seabed sediments: a case study in the Malfidano mining area (SW Sardinia, Italy)

Abstract

Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0–80 mg/kg of Zn, 5.4–60 mg/kg of Fe and 0.5–4.5 mg/kg of Mn. X-ray absorption near edge structure (XANES) analysis revealed that for all the investigated genera, Zn occurred as independent Zn mineral phases, i.e., it was not incorporated or adsorbed into the aragonitic lattice. Overall, our results indicated that Zn coordination environment depends on the amount of incorporated Zn. Zn phosphate was the most abundant species in Donax and Lentidium genera, whereas, Chamelea shells, characterized by the highest Zn concentrations, showed the prevalence of Zn-cysteine species (up to 56% of total speciation). Other Zn coordination species found in the investigated samples were Zn hydrate carbonate (hydrozincite) and Zn phosphate. On the basis of the coordination environments, it was deduced that bivalves have developed different biogeochemical mechanisms to regulate Zn content and its chemical speciation and that cysteine plays an important role as an active part of detoxification mechanism. This work represents a step forward for understanding bivalve biomineralization and its significance for environmental monitoring and paleoreconstruction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV (2016) Bacteria-zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293. https://doi.org/10.1111/nph.13588

    CAS  Article  Google Scholar 

  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109. https://doi.org/10.1021/ja027296o

    CAS  Article  Google Scholar 

  3. Amoozadeh E, Malek M, Rashidinejad R, Nabavi S, Karbassi M, Ghayoumi R, Ghorbanzadeh-Zafarani G, Salehi H, Sures B (2014) Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut Res 21:2386–2395. https://doi.org/10.1007/s11356-013-1890-8

    CAS  Article  Google Scholar 

  4. Andral B, Galgani F, Tomasino C, Bouchoucha M, Blottiere C, Scarpato A, Benedicto J, Deudero S, Calvo M, Cento A, Benbrahim S, Boulahdid M, Sammari C (2011) Chemical contamination baseline in the Western Basin of the Mediterranean Sea based on transplanted mussels. Arch Environ Contam Toxicol 61:261–271. https://doi.org/10.1007/s00244-010-9599-x

    CAS  Article  Google Scholar 

  5. Apitz SE, Degetto S, Cantaluppi C (2009) The use of statistical methods to separate natural background and anthropogenic concentrations of trace elements in radio-chronologically selected surface sediments of the Venice lagoon. Mar Pollut Bull 58:402–414. https://doi.org/10.1016/j.marpolbul.2008.10.007

    CAS  Article  Google Scholar 

  6. Arfaeinia H, Nabipour I, Ostovar A, Asadgol Z, Abuee E, Keshtkar M, Dobaradaran S (2016) Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. Environ Sci Pollut Res 23:9871–9890. https://doi.org/10.1007/s11356-016-6189-0

    CAS  Article  Google Scholar 

  7. Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S (2017) Insights from the shell proteome: biomineralization to adaptation. Mol Biol Evol 34:66–77. https://doi.org/10.1093/molbev/msw219

    CAS  Article  Google Scholar 

  8. Atzori G, Aru V, Marincola FC et al (2018) Sediments distribution of trace metals in a coastal lagoon (southern Sardinia, Mediterranean Sea): assessment of contamination and ecological risk. Chem Ecol 34:727–746. https://doi.org/10.6084/m9.figshare.6714137.v1

    CAS  Article  Google Scholar 

  9. Bechstädt T, Boni M (1994) Sedimentological, stratigraphical and ore deposits field guide of the autochthonous Cambro-Ordovician of southwestern Sardinia: Servizio Geologico d’Italia Memorie Descritive carta Geologica d’Italia, v. XLVIII, 434 p

  10. Benfatto M, Meneghini C (2014) A close look into the low energy region of the XAS spectra: the XANES region. In: Synchrotron radiation, basic, methods and applications. Mobilio, S., Boscherini, F., Meneghini, C., Springer-Verlag, Berlin, pp 213–240

  11. Bilgin M, Uluturhan-Suzer E (2017) Assessment of trace metal concentrations and human health risk in clam (Tapes decussatus) and mussel (Mytilus galloprovincialis) from the Homa lagoon (eastern Aegean Sea). Environ Sci Pollut Res 24:4174–4184. https://doi.org/10.1007/s11356-016-8163-2

    CAS  Article  Google Scholar 

  12. Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470. https://doi.org/10.1023/A:1005995217901

    CAS  Article  Google Scholar 

  13. Boni M, Gilg HA, Aversa G, Balassone G (2003) The “calamine” of Southwest Sardinia: geology, mineralogy, and stable isotope geochemistry of supergene Zn mineralization. Econ Geol 98:731–748. https://doi.org/10.2113/gsecongeo.98.4.731

    CAS  Article  Google Scholar 

  14. Brown BE (1982) The form and function of metal-containing granules in invertebrate tissues. Biol Rev 57:621–625. https://doi.org/10.1111/j.1469-185X.1982.tb00375.x

    CAS  Article  Google Scholar 

  15. Brown ME, Kowalewski M, Neves RJ, Cherry DS, Schreiber ME (2005) Freshwater mussel shells as environmental chronicles: geochemical and taphonomic signatures of mercury-related extirpations in the north fork Holston River, Virginia. Environ Sci Technol 39:1455–1462. https://doi.org/10.1021/es048573p

    CAS  Article  Google Scholar 

  16. Caldelas C, Weiss DJ (2017) Zinc homeostasis and isotopic fractionation in plants: a review. Plant Soil 411:17–46. https://doi.org/10.1007/s11104-016-3146-0

    CAS  Article  Google Scholar 

  17. Cariou E, Guivel C, La C et al (2017) Lead accumulation in oyster shells, a potential tool for environmental monitoring. Mar Pollut Bull 125:19–29. https://doi.org/10.1016/j.marpolbul.2017.07.075

    CAS  Article  Google Scholar 

  18. Carney CK, Harry SR, Sewell SL (2007) Detoxification biominerals. In: Biomineralization I. Topics in current chemistry. Naka K., Springer, Berlin, Heidelberg, pp 155–185

  19. Carroll M, Romanek CS (2008) Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Mar Lett 28:369–381. https://doi.org/10.1007/s00367-008-0117-3

    CAS  Article  Google Scholar 

  20. Castillo-Michel HA, Larue C, Pradas del Real AE et al (2017) Practical review on the use of synchrotron based micro- and nano-x-ray fluorescence mapping and x-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol Biochem 110:13–32. https://doi.org/10.1016/j.plaphy.2016.07.018

    CAS  Article  Google Scholar 

  21. Checa A (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32:405–416. https://doi.org/10.1054/tice.2000.0129

    CAS  Article  Google Scholar 

  22. Cherchi A, Buosi C, Zuddas P, De Giudici G (2012) Bioerosion by microbial euendoliths in benthic foraminifera from heavy metal-polluted coastal environments of Portovesme (South-Western Sardinia, Italy). Biogeosciences 9:4607–4620. https://doi.org/10.5194/bg-9-4607-2012

    CAS  Article  Google Scholar 

  23. Cidu R, Biddau R, Fanfani L (2009) Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor 100:125–132. https://doi.org/10.1016/j.gexplo.2008.02.003

    CAS  Article  Google Scholar 

  24. Cidu R, Medas D, Di Palma M (2007) The Fluminese mining district (SW Sardinia, Italy): impact of the past lead-zinc exploitation on aquatic environment. R. Cidu & F. Frau, Mako Edizioni, Cagliari, pp 47–51

  25. Conners DE, Westerfield SM, Feyko A, Black MC (1999) Lead accumulation in soft tissues and shells of Asiatic clams (Corbicula fluminea). In: Proceedings of the Georgia water resources conference. Hatcher, K. J., Athens, GA: University of Georgia., pp 597–600

  26. Coombs J, George SG (1978) Mechanisms of immobilization and detoxification of metals in marine organisms. In: Physiology and behavior of marine organism. D.S. McLusky and A.J. Berry, Pergamon Press, Oxford, pp 179–185

  27. Cunningham DP, Lundie LLJ (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    CAS  Google Scholar 

  28. De Giudici G, Lattanzi P, Medas D (2014a) Synchrotron radiation and environmental sciences. In: Synchrotron radiation. Mobilio, S., Boscherini, F., Meneghini, C., Springer-Verlag Berlin Heidelberg, pp 661–676

  29. De Giudici G, Medas D, Cidu R et al (2018a) Application of hydrologic-tracer techniques to the Casargiu adit and Rio Irvi (SW-Sardinia, Italy): using enhanced natural attenuation to reduce extreme metal loads. Appl Geochem 96:42–54. https://doi.org/10.1016/j.apgeochem.2018.06.004

    CAS  Article  Google Scholar 

  30. De Giudici G, Medas D, Meneghini C et al (2015) Microscopic biomineralization processes and Zn bioavailability: a synchrotron-based investigation of Pistacia lentiscus L. roots. Environ Sci Pollut Res Int 22:19352–19361. https://doi.org/10.1007/s11356-015-4808-9

    CAS  Article  Google Scholar 

  31. De Giudici G, Meneghini C, Medas D et al (2018b) Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem Geol 477:100–111. https://doi.org/10.1016/j.chemgeo.2017.12.009

    CAS  Article  Google Scholar 

  32. De Giudici G, Pusceddu C, Medas D et al (2017) The role of natural biogeochemical barriers in limiting metal loading to a stream affected by mine drainage. Appl Geochem 76:124–135. https://doi.org/10.1016/j.apgeochem.2016.11.020

    CAS  Article  Google Scholar 

  33. De Giudici G, Wanty RB, Podda F et al (2014b) Quantifying biomineralization of zinc in the rio Naracauli (Sardinia, Italy), using a tracer injection and synoptic sampling. Chem Geol 384:110–119. https://doi.org/10.1016/j.chemgeo.2014.07.002

    CAS  Article  Google Scholar 

  34. Deb SC, Fukushima T (1999) Metals in aquatic ecosystems: mechanisms of uptake, accumulation and release-ecotoxicological perspectives. Int J Environ Sci Technol 56:385–417. https://doi.org/10.1080/00207239908711212

    CAS  Article  Google Scholar 

  35. Di Cicco AD, Aquilanti G, Minicucci M et al (2009) Novel XAFS capabilities at ELETTRA synchrotron light source. J Phys Conf Ser 190:012043

    Article  Google Scholar 

  36. Dobaradaran S, Nabipour I, Saeedi R, Ostovar A, Khorsand M, Khajeahmadi N, Hayati R, Keshtkar M (2017) Association of metals (Cd, Fe, As, Ni, Cu, Zn and Mn) with cigarette butts in northern part of the Persian Gulf. Tob Control 26:461–463. https://doi.org/10.1136/tobaccocontrol-2016-052931

    Article  Google Scholar 

  37. Dobaradaran S, Schmidt TC, Nabipour I, Ostovar A, Raeisi A, Saeedi R, Khorsand M, Khajeahmadi N, Keshtkar M (2018a) Cigarette butts abundance and association of mercury and lead along the Persian Gulf beach: an initial investigation. Environ Sci Pollut Res 25:5465–5473. https://doi.org/10.1007/s11356-017-0676-9

    CAS  Article  Google Scholar 

  38. Dobaradaran S, Soleimani F, Nabipour I, Saeedi R, Mohammadi MJ (2018b) Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf. Mar Pollut Bull 126:74–76. https://doi.org/10.1016/j.marpolbul.2017.10.094

    CAS  Article  Google Scholar 

  39. Faggio C, Tsarpali V, Dailianis S (2018) Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Sci Total Environ 636:220–229. https://doi.org/10.1016/j.scitotenv.2018.04.264

    CAS  Article  Google Scholar 

  40. Foster LC, Allison N, Finch AA, Andersson C (2009) Strontium distribution in the shell of the aragonite bivalve Arctica islandica. Geochem Geophys 10:Q03003. https://doi.org/10.1029/2007GC001915

    CAS  Article  Google Scholar 

  41. Foster LC, Finch AA, Allison N, Andersson C, Clarke LJ (2008) Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica. Chem Geol 254:113–119. https://doi.org/10.1016/j.chemgeo.2008.06.007

    CAS  Article  Google Scholar 

  42. Frau F, Medas D, Da Pelo S et al (2015) Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage. Water Air Soil Pollut 226:55. https://doi.org/10.1007/s11270-015-2339-0

    CAS  Article  Google Scholar 

  43. George SG, Pirie BJS, Cheyne AR, Coombs TL, Grant PT (1978) Detoxication of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster Ostrea edulis. Mar Biol 45:147–156. https://doi.org/10.1007/BF00390550

    CAS  Article  Google Scholar 

  44. Géret F, Jouan A, Turpin V et al (2002) Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat Living Resour 15:61–66. https://doi.org/10.1016/S0990-7440(01)01147-0

    Article  Google Scholar 

  45. Gianoncelli A, Kaulich B, Alberti R, Klatka T, Longoni A, de Marco A, Marcello A, Kiskinova M (2009) Simultaneous soft x-ray transmission and emission microscopy. Nucl Instrum Methods Phys Res A 608:195–198. https://doi.org/10.1016/j.nima.2009.06.035

    CAS  Article  Google Scholar 

  46. Gianoncelli A, Kourousias G, Altissimo M et al (2016b) Combining multiple imaging techniques at the TwinMic X-ray microscopy beamline. AIP Conference Proceedings 1764:030002. https://doi.org/10.1063/1.4961136

    CAS  Article  Google Scholar 

  47. Gianoncelli A, Kourousias G, Merolle L, Altissimo M, Bianco A (2016a) Current status of the TwinMic beamline at Elettra: a soft x-ray transmission and emission microscopy station. J Synchrotron Radiat 23:1526–1537. https://doi.org/10.1107/S1600577516014405

    Article  Google Scholar 

  48. Gianoncelli A, Kourousias G, Stolfa A, Kaulich B (2013) Recent developments at the TwinMic beamline at ELETTRA: an 8 SDD detector setup for low energy x-ray fluorescence. J Phys Conf Ser 425:182001

    Article  Google Scholar 

  49. Gianoncelli A, Morrison GR, Kaulich B, Bacescu D, Kovac J (2006) A fast readout CCD camera system for scanning x-ray microscopy. Appl Phys Lett 89:251117–251119. https://doi.org/10.1063/1.2422908

    CAS  Article  Google Scholar 

  50. Gillikin D, Lorrain A, Navez J et al (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys 6. https://doi.org/10.1029/2004GC000874

  51. Guo X, Feng C (2018) Biological toxicity response of Asian clam (Corbicula fluminea) to pollutants in surface water and sediment. Sci Total Environ 631–632:56–70. https://doi.org/10.1016/j.scitotenv.2018.03.019

    CAS  Article  Google Scholar 

  52. Hahn S, Rodolfo-Metalpa R, Griesshaber E, Schmahl WW, Buhl D, Hall-Spencer JM, Baggini C, Fehr KT, Immenhauser A (2012) Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences 9:1897–1914. https://doi.org/10.5194/bg-9-1897-2012

    CAS  Article  Google Scholar 

  53. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive x-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147. https://doi.org/10.1007/BF00381789

    CAS  Article  Google Scholar 

  54. Huanxin W, Lejun Z, Presley BJ (2000) Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environ Geol 39:1216–1226. https://doi.org/10.1007/s002540000110

    CAS  Article  Google Scholar 

  55. Jou L-J, Chen B-C, Chen W-Y, Liao C-M (2016) Sensory determinants of valve rhythm dynamics provide in situ biodetection of copper in aquatic environments. Environ Sci Pollut Res Int 23:5374–5389. https://doi.org/10.1007/s11356-015-5735-5

    CAS  Article  Google Scholar 

  56. Karbasdehi VN, Dobaradaran S, Nabipour I, Ostovar A, Vazirizadeh A, Ravanipour M, Nazmara S, Keshtkar M, Mirahmadi R, Noorinezhad M (2016a) A new bioindicator, shell of Trachycardium lacunosum, and sediment samples to monitors metals (Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu) in marine environment: the Persian Gulf as a case. J Environ Health Sci Eng 14:16. https://doi.org/10.1186/s40201-016-0260-0

    CAS  Article  Google Scholar 

  57. Karbasdehi VN, Dobaradaran S, Nabipour I, Arfaeinia H, Mirahmadi R, Keshtkar M (2016b) Data on metal contents (As, Ag, Sr, Sn, Sb, and Mo) in sediments and shells of Trachycardium lacunosum in the northern part of the Persian Gulf. Data in Brief 8:966–971. https://doi.org/10.1016/j.dib.2016.06.065

    Article  Google Scholar 

  58. Kastner M (1999) Oceanic minerals: their origin, nature of their environment, and significance. Proc Natl Acad Sci U S A 96:3380–3387. https://doi.org/10.1073/pnas.96.7.3380

    CAS  Article  Google Scholar 

  59. Kaulich B, Bacescu D, Susini J, et al (2006) Proceeding 8th international conference x-ray microscopy IPAP Conf. Series. S. Aoki, Y. Kagoshima, Y. Suzuki, p 22

  60. Kennedy WJ, Taylor JD, Hall A (2008) Environmental and biological controls on bivalve shell mineralogy. Biol Rev 44:499–530. https://doi.org/10.1111/j.1469-185X.1969.tb00610.x

    Article  Google Scholar 

  61. Klein RT, Lohmann KC, Thayer CW (1996) SrCa and 13C12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochim Cosmochim Acta 60:4207–4221. https://doi.org/10.1016/S0016-7037(96)00232-3

    CAS  Article  Google Scholar 

  62. Koide M, Lee DS, Goldberg ED (1982) Metal and transuranic records in mussel shells, byssal threads and tissues. Estuar Coast Shelf Sci 15:679–695

    CAS  Article  Google Scholar 

  63. Kong Y, Jing G, Yan Z, Li C, Gong N, Zhu F, Li D, Zhang Y, Zheng G, Wang H, Xie L, Zhang R (2009) Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J Biol Chem 284:10841–10854. https://doi.org/10.1074/jbc.M808357200

    CAS  Article  Google Scholar 

  64. Kucuksezgin F, Pazi I, Yucel-Gier G, Akcali B, Galgani F (2013) Monitoring of heavy metal and organic compound levels along the eastern Aegean coast with transplanted mussels. Chemosphere 93:1511–1518. https://doi.org/10.1016/j.chemosphere.2013.07.058

    CAS  Article  Google Scholar 

  65. Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez JL (2007) Trace metals assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68:2033–2039. https://doi.org/10.1016/j.chemosphere.2007.02.039

    CAS  Article  Google Scholar 

  66. Lerotic M, Mak R, Wirick S, Meirer F, Jacobsen C (2014) MANTiS: a program for the analysis of x-ray spectromicroscopy data. J Synchrotron Radiat 21:1206–1212. https://doi.org/10.1107/S1600577514013964

    CAS  Article  Google Scholar 

  67. Lopes-Lima M, Freitas S, Pereira L, Gouveia E, Hinzmann M, Checa A, Machado J (2012) Ionic regulation and shell mineralization in the bivalve Anodonta cygnea (swan mussel) following heavy-metal exposure. Can J Zool 90:267–283. https://doi.org/10.1139/z11-129

    CAS  Article  Google Scholar 

  68. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  69. Luo L, Zhang S (2010) Applications of synchrotron-based x-ray techniques in environmental science. Sci China Chem 53:2529–2538. https://doi.org/10.1007/s11426-010-4085-x

    CAS  Article  Google Scholar 

  70. Lutz RA (2004) Bivalve molluscs: biology, ecology and culture by Elizabeth Gosling the quarterly review of biology 79:317–317. doi: https://doi.org/10.1086/425799

  71. Marcello A, Pretti S, Valera P, et al (2004) Metallogeny in Sardinia (Italy): from the Cambrian to the tertiary. In: 32nd international geological congress, APAT 4, 14–36, Firenze., mem. Descr. Carta Geol. d’It. Guerrieri L., Rischia I., Serva L

  72. Marin F, Roy NL, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci 4:1099–1125

    Article  Google Scholar 

  73. Medas D, Cidu R, De Giudici G, Podda F (2013) Geochemistry of rare earth elements in water and solid materials at abandoned mines in SW Sardinia (Italy). J Geochem Explor 133:149–159

    CAS  Article  Google Scholar 

  74. Medas D, De Giudici G, Casu MA et al (2015) Microscopic processes ruling the bioavailability of Zn to roots of euphorbia pithyusa L. pioneer plant. Environ Sci Technol 49:1400–1408. https://doi.org/10.1021/es503842w

    CAS  Article  Google Scholar 

  75. Medas D, De Giudici G, Podda F et al (2014a) Apparent energy of hydrated biomineral surface and apparent solubility constant: an investigation of hydrozincite. Geochim Cosmochim Acta 140:349–364. https://doi.org/10.1016/j.gca.2014.05.019

    CAS  Article  Google Scholar 

  76. Medas D, De Giudici G, Pusceddu C et al (2017b) Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine polluted sites. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.08.031

  77. Medas D, Lattanzi P, Podda F, Meneghini C, Trapananti A, Sprocati A, Casu MA, Musu E, De Giudici G (2014b) The amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy. Environ Sci Pollut Res 21(11):6775–6782

    CAS  Article  Google Scholar 

  78. Medas D, Meneghini C, Podda F, Floris C, Casu M, Casu MA, Musu E, de Giudici G (2018) Structure of low-order hemimorphite produced in a Zn-rich environment by cyanobacterium Leptolingbya frigida. Am Mineral 103:711–719. https://doi.org/10.2138/am-2018-6128

    Article  Google Scholar 

  79. Medas D, Podda F, Meneghini C, De Giudici G (2017a) Stability of biological and inorganic hemimorphite: implications for hemimorphite precipitation in non-sulfide Zn deposits. Ore Geol Rev 89:808–821. https://doi.org/10.1016/j.oregeorev.2017.07.015

    Article  Google Scholar 

  80. Meneghini C, Bardelli F, Mobilio S (2012) ESTRA-FitEXA: a software package for EXAFS data analysis. Nucl Instrum Methods Phys Res B 285:153–157. https://doi.org/10.1016/j.nimb.2012.05.027

    CAS  Article  Google Scholar 

  81. Meneghini C, Di Matteo S, Monesi C et al (2005) Structural dichroism in the antiferromagnetic insulating phase of V2O3. Phys Rev B 72:033111. https://doi.org/10.1103/PhysRevB.72.033111

    CAS  Article  Google Scholar 

  82. Morelli G, Rimondi V, Benvenuti M, Medas D, Costagliola P, Gasparon M (2017) Experimental simulation of arsenic desorption from quaternary aquifer sediments following sea water intrusion. Appl Geochem 87:176–187. https://doi.org/10.1016/j.apgeochem.2017.10.024

    CAS  Article  Google Scholar 

  83. Morrison GR, Gianoncelli A, Kaulich B, et al (2006) A fast readout CCD system for configured-detector imaging in STXM. In: Conf. Proc. Ser. IPAP. pp 277–379

  84. Moschino V, Schintu M, Marrucci A, Marras B, Nesto N, da Ros L (2017) An ecotoxicological approach to evaluate the effects of tourism impacts in the marine protected area of La Maddalena (Sardinia, Italy). Mar Pollut Bull 122:306–315. https://doi.org/10.1016/j.marpolbul.2017.06.062

    CAS  Article  Google Scholar 

  85. Moura G, Guedes R, Machado J (1999) The extracellular mineral concretions in Anodonta cygnea (L.): different types and manganese exposure-caused changes. J Shellfish Res 18:645–650

    Google Scholar 

  86. Numpy https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.corrcoef.html - Copyright 2008-2009, The Scipy community. Last updated on May 11, 2014

  87. Pietrzak J, Bates J, Scott R (1976) Constituents of unionoid extrapalial fluid. II pH and metal ion composition. Hydrobiologia 50:89–93

    CAS  Article  Google Scholar 

  88. Podda F, Medas D, De Giudici G, Ryszka P, Wolowski K, Turnau K (2014) Zn biomineralization processes and microbial biofilm in a metal-rich stream (Naracauli, Sardinia). Environ Sci Pollut Res 21(11):6793–6808

    CAS  Article  Google Scholar 

  89. RAS (2008) Regione Autonoma della Sardegna - Piano Regionale di gestione dei rifiuti - Piano di bonifica siti inquinati

  90. Romano E, De Giudici G, Bergamin L et al (2017) The marine sedimentary record of natural and anthropogenic contribution from the Sulcis-Iglesiente mining district (Sardinia, Italy). Mar Pollut Bull 122:331–343. https://doi.org/10.1016/j.marpolbul.2017.06.070

    CAS  Article  Google Scholar 

  91. Rosenberg GD, Hughes WW (1991) A metabolic model for the determination of shell composition in the bivalve mollusc, Mytilus edulis. Lethaia 24:83–96. https://doi.org/10.1111/j.1502-3931.1991.tb01182.x

    Article  Google Scholar 

  92. Rzymski P, Niedzielski P, Klimaszyk P, Poniedziałek B (2014) Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess 186:3199–3212. https://doi.org/10.1007/s10661-013-3610-8

    CAS  Article  Google Scholar 

  93. Salvi G, Buosi C, Arbulla D et al (2015) Ostracoda and foraminifera response to a contaminated environment: the case of the ex-military arsenal of the la Maddalena harbour (Sardinia, Italy). Micropaleontol 61:115–133

    Google Scholar 

  94. Sarmiento AM, Bonnail E, Nieto JM, DelValls A (2016) Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment. Environ Sci Pollut Res Int 23:22957–22967. https://doi.org/10.1007/s11356-016-7464-9

    CAS  Article  Google Scholar 

  95. Schintu M, Durante L, Maccioni A, Meloni P, Degetto S, Contu A (2008) Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques. Mar Pollut Bull 57:832–837. https://doi.org/10.1016/j.marpolbul.2008.02.038

    CAS  Article  Google Scholar 

  96. Scipy https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html - Copyright 2008-2009, The Scipy community. Last updated on May 11, 2014

  97. Sforzini S, Oliveri C, Orrù A, Chessa G, Pacchioni B, Millino C, Jha AN, Viarengo A, Banni M (2018) Application of a new targeted low density microarray and conventional biomarkers to evaluate the health status of marine mussels: a field study in Sardinian coast, Italy. Sci Total Environ 628–629:319–328. https://doi.org/10.1016/j.scitotenv.2018.01.293

    CAS  Article  Google Scholar 

  98. Simkiss K, Mason AZ (1983) 4 - Metal ions: metabolic and toxic effects 1 A2 - Hochachka, Peter W. In: The Mollusca. Academic Press, San Diego, pp 101–164

  99. Soldati AL, Jacob DE, Glatzel P, Swarbrick JC, Geck J (2016) Element substitution by living organisms: the case of manganese in mollusc shell aragonite. Sci Rep 6:22514. https://doi.org/10.1038/srep22514

    CAS  Article  Google Scholar 

  100. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim Acta Part B At Spectrosc 62:63–68. https://doi.org/10.1016/j.sab.2006.12.002

    CAS  Article  Google Scholar 

  101. Soleimani F, Dobaradaran S, Hayati A, Khorsand M, Keshtkar M (2016) Data on metals (Zn, Al, Sr, and Co) and metalloid (As) concentration levels of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Data in Brief 9:429–432. https://doi.org/10.1016/j.dib.2016.09.017

    Article  Google Scholar 

  102. Stara P, Rizzo R, Tanca GA (1996) Iglesiente-Arburese: Miniere e Minerali. Centrooffset, Siena

  103. Stecher HA, Krantz DE, Lord CJ et al (1996) Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochim Cosmochim Ac 60:3445–3456. https://doi.org/10.1016/0016-7037(96)00179-2

    CAS  Article  Google Scholar 

  104. Steinhardt J, Butler PG, Carroll ML, Hartley J (2016) The application of long-lived bivalve sclerochronology in environmental baseline monitoring. Front Mar Sci 3:176. https://doi.org/10.3389/fmars.2016.00176

    Article  Google Scholar 

  105. Suzuki M, Murayama E, Inoue H et al (2004) Characterization of prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J 382:205–213. https://doi.org/10.1042/BJ20040319

    CAS  Article  Google Scholar 

  106. Suzuki M, Sakuda S, Nagasawa H (2007) Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci Biotechnol Biochem 71:1735–1744

    CAS  Article  Google Scholar 

  107. Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of Bivalvia: introduction, nuculacea-trigonacea. Nuculacea-Trigonacea Bull Br Mus 3:1–125

    Google Scholar 

  108. Terzano R, Al Chami Z, Vekemans B et al (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. J Agric Food Chem 56:3222–3231. https://doi.org/10.1021/jf073304e

    CAS  Article  Google Scholar 

  109. Tevesz MJS, Carter JG (1980) Environmental relationships of shell form and structure of Unionacean bivalves. In: Skeletal growth of aquatic organisms. Rhoads D.C., Lutz R., Plenum, New York, pp 295–322

  110. Torchio R, Meneghini C, Mobilio S, Capellini G, Garcia Prieto A, Alonso J, Fdez-Gubieda ML, Turco Liveri V, Longo A, Ruggirello AM, Neisius T (2010) Microstructure and magnetic properties of colloidal cobalt nano-clusters. J Magn Magn Mater 322:3565–3571. https://doi.org/10.1016/j.jmmm.2010.07.008

    CAS  Article  Google Scholar 

  111. Tsukamoto D, Sarashina I, Endo K (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun 320:1175–1180. https://doi.org/10.1016/j.bbrc.2004.06.072

    CAS  Article  Google Scholar 

  112. Tynan S, Eggins S, Kinsley L et al (2005) Mussel shells as environmental tracers: an example from the Loveday Basin. Regolith:314–317

  113. Vaughn CC (2018) Ecosystem services provided by freshwater mussels. Hydrobiologia 810:15–27. https://doi.org/10.1007/s10750-017-3139-x

    Article  Google Scholar 

  114. Weiner S, Lowenstam HA, Hood L (1976) Characterization of 80-million-year-old mollusk shell proteins. Proc Natl Acad Sci U S A 73:2541–2545

    CAS  Article  Google Scholar 

  115. Wilbur KM, Saleuddin ASM (1983) Shell formation. In: The Mollusca. Saleuddin ASM, Wilbur KM, Academic, New York, pp 235–287

  116. Wong KW, Yap CK, Nulit R, Hamzah MS, Chen SK, Cheng WH, Karami A, al-Shami SA (2017) Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river. Environ Sci Pollut Res Int 24:116–134. https://doi.org/10.1007/s11356-016-7951-z

    CAS  Article  Google Scholar 

  117. Yan H, Chen J, Xiao J (2014) A review on bivalve shell, a tool for reconstruction of paleo-climate and paleo-environment. Chin J Chem 33:310–315. https://doi.org/10.1007/s11631-014-0692-0

    CAS  Article  Google Scholar 

  118. Yao Z, Xia M, Li H, Chen T, Ye Y, Zheng H (2014) Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Crit Rev Environ Sci Technol 44:2502–2530. https://doi.org/10.1080/10643389.2013.829763

    CAS  Article  Google Scholar 

  119. Yoshimura T, Tamenori Y, Suzuki A, Nakashima R, Iwasaki N, Hasegawa H, Kawahata H (2013) Element profile and chemical environment of sulfur in a giant clam shell: insights from μ-XRF and x-ray absorption near-edge structure. Chem Geol 352:170–175. https://doi.org/10.1016/j.chemgeo.2013.05.035

    CAS  Article  Google Scholar 

  120. Zuykov M, Pelletier E, Harper DAT (2013) Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 93:201–208. https://doi.org/10.1016/j.chemosphere.2013.05.001

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CERIC-ERIC Consortium (grant numbers: 20152041, 20162061, 20167045) for the access to experimental facilities and financial support and the Romanian Ministry of Education (through the Core Program, Project PN16-480102). XAFS (Elettra) 20160254 beamtime, Diamond SP 16496 beamtime, and grant are acknowledged. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. GDG and DM acknowledge RAS (grant number: E58C16000080003) and RAS/FBS (grant number: F72F16003080002). The Grant of Excellence Departments, MIUR (ARTICOLO 1, COMMI 314–337 LEGGE 232/2016), is gratefully acknowledged. We also thank three anonymous Journal Reviewers for their excellent constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniela Medas.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medas, D., Carlomagno, I., Meneghini, C. et al. Zinc incorporation in marine bivalve shells grown in mine-polluted seabed sediments: a case study in the Malfidano mining area (SW Sardinia, Italy). Environ Sci Pollut Res 25, 36645–36660 (2018). https://doi.org/10.1007/s11356-018-3504-y

Download citation

Keywords

  • Bivalve
  • Biomineralization
  • Detoxification
  • Synchrotron x-ray techniques
  • Trace metals
  • Zinc