Skip to main content
Log in

Particulate matter and particulate-bound mercury in a heavily polluted site related to ancient mining and metallurgy: a proposal for dry deposition modeling based on micrometeorological conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This manuscript reported data for total suspended particulate matter (TSPM), particle-bound mercury (PBM), and total gaseous mercury (TGM) in Almadenejos, a rural zone of ancient Hg mining and metallurgical works. Concentrations of TSPM characterize the study site as being a rural area, with levels below 40 μg m−3 during most of the year and sporadic events involving dust intrusions from Africa. Mercury speciation of PM and nearby soils, which contain both cinnabar and organic Hg, confirms that the PM comes from local soil emissions involving the soils polluted by ancient metallurgical works. Conversely, PBM and TGM levels (average 1.8 ng m−3 and 88 ng m−3, respectively) define Almadenejos as a contaminated site similar to urban areas. A multiple linear regression analysis showed that evapotranspiration is the micrometeorological parameter that best explains the TSPM and PBM data, with the creation of a diurnal mixing layer being the main process involved in Hg emissions in the solid and gaseous states. Based on these findings, a micrometeorological-based model has been developed to acquire a complete set of daily PBM data and these were used to obtain dry deposition rates (317 μg m−2 year−1), which were seasonally distributed as 40% in summer, 33% in autumn, 16% in spring, and 11% in winter. In addition, an estimation of PBM emissions showed that 335 g year−1 can be suspended in the Almadenejos environment. A large proportion of this PBM should be removed from the atmosphere through dry deposition in a continuous Hg exchange at the soil–atmosphere interface. Mercury fractionation (cinnabar and organic Hg) can increase the risk to the human population and nearby ecosystems of Almadenejos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit Rev Environ Sci Technol 47(9):693–794

    Article  CAS  Google Scholar 

  • Brunekreef B, Künzli N, Pekkanen J, Annesi-Maesano I, Forsberg B, Sigsgaard T, Keuken M, Forastiere F, Barry M, Querol X, Harrison RM (2015) Clean air in Europe: beyond the horizon? Eur Respir J 45:7–10

    Article  Google Scholar 

  • Cachorro VE, Burgos MA, Mateos D, Toledano C, Bennouna Y, Torres B, De Frutos AM, Herguedas A (2016) Inventory of African desert dust events in the north-Central Iberian Peninsula in 2003-2014 based on sun-photometer-AERONET and particulate-mass-EMEP data. Atmos Chem Phys 16(13):8227–8248

    Article  CAS  Google Scholar 

  • Campos J, Esbrí JM, Madrid MM, Naharro R, Peco J, García-Noguero EM, Amorós JA, Moreno MM, Higueras P (2018) Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain). Chemosphere 201:799–806

    Article  CAS  Google Scholar 

  • Dommergue A, Sprovieri F, Pirrone N, Ebinghaus R, Brooks S, Courteaud J, Ferrari CP (2010) Overview of mercury measurements in the Antarctic troposphere. Atmos Chem Phys 10:3309–3319

    Article  CAS  Google Scholar 

  • EEA (2015) Air quality in Europe — 2014 report. EEA Report No 5/2014. Available at https://www.eea.europa.eu/publications/air-quality-in-europe-2014/at_download/file

  • Esbrí JM, Martínez-Coronado A, Higueras PL (2016) Temporal variations in gaseous elemental mercury concentrations at a contaminated site: Main factors affecting nocturnal maxima in daily cycles. Atmos Environ 125:8–14

    Article  Google Scholar 

  • Fang F, Wang Q, Li J (2001) Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. Sci Total Environ 281:229–236

    Article  CAS  Google Scholar 

  • FAO (1998) Crop evapotranspiration - guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Edited by Allen, R.G., Pereira, L.S., Raes, D. and Smith M. Rome, 1998. Available at http://www.fao.org/docrep/X0490E/x0490e06.htm

  • Fu XW, Zhang H, Yu B, Wang X, Lin C, Feng XB (2015) Observations of atmospheric mercury in China: a critical review. Atmos Chem Phys 15(16):9455–9476

    Article  CAS  Google Scholar 

  • Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environ Sci Technol 38(16):4285–4292

    Article  CAS  Google Scholar 

  • Guo J, Kang S, Huang J, Zhang Q, Rupakheti M, Sun S, Tripathee L, Rupakheti D, Panday AK, Sillanpää M, Paudyal R (2017) Characterizations of atmospheric particulate-bound mercury in the Kathmandu valley of Nepal, South Asia. Sci Total Environ 579:1240–1248

    Article  CAS  Google Scholar 

  • Gustin M, Jaffe D (2010) Reducing the uncertainty in measurement and understanding of mercury in the atmosphere. Environ Sci Technol 44:2222–2227

    Article  CAS  Google Scholar 

  • Gustin MS, Amos HM, Huang J, Miller MB, Heidecorn K (2015) Measuring and modeling mercury in the atmosphere: a critical review. Atmos Chem Phys 15(10):5697–5713

    Article  CAS  Google Scholar 

  • Hong Q, Xie Z, Liu C, Wang F, Xie P, Kang H, Xu J, Wang J, Wu F, He P, Mou F, Fan S, Dong Y, Zhan H, Yu X, Chi X, Liu J (2016) Speciated atmospheric mercury on haze and non-haze days in an inland city in China. Atmos Chem Phys 16(21):13807–13821

    Article  CAS  Google Scholar 

  • Huang J, Kang S, Guo J, Zhang Q, Cong Z, Sillanpää M, Zhang G, Sun S, Tripathee L (2016) Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmos Environ 142:433–441

    Article  CAS  Google Scholar 

  • Kock HH, Bieber E, Ebinghaus R, Spain TG, Thees B (2005) Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmos Environ 39:7549–7556

    Article  CAS  Google Scholar 

  • Kocman D, Vreča P, Fajon V, Horvat M (2011) Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environ Res 111(1):1–9

    Article  CAS  Google Scholar 

  • Lamborg CH, Fitzgerald WF, Vandal GM, Rolfhus KR (1995) Atmospheric mercury in Northern Wisconsin: sources and species. Water Air Soil Pollut 80(1–4):189–198

    Article  CAS  Google Scholar 

  • Lee DS, Dollard GJ, Pepler S (1998) Gas-phase mercury in the atmosphere of the United Kingdom. Atmos Environ 32:855–864

    Article  CAS  Google Scholar 

  • Li J, Sommar J, Wangberg I, Lindqvist O, Wei SQ (2008) Short-time variation of mercury speciation in the urban of Goteborg during GOTE-2005. Atmos Environ 42:8382–8388

    Article  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng ATA, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monitor 13(12):3460–3468

    Article  CAS  Google Scholar 

  • Lu J, Schroeder W (1999) Sampling and determination of particulate mercury in ambient air: a review. Water Air Soil Pollut 112:279–295

    Article  CAS  Google Scholar 

  • Lu JY, Schroeder WH, Berg T, Munthe J, Schneeberger D, Schaedlich F (1998) A device for sampling and determination of total particulate mercury in ambient air. Anal Chem 70:2403–2408

    Article  CAS  Google Scholar 

  • Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): the old metallurgical precinct (1794 to 1861AD) and surrounding areas. J Geochem Explor 109(1–3):70–77

    Article  Google Scholar 

  • Moreno T, Higueras P, Jones T, McDonald I, Gibbons W (2005) Size fractionation in mercury-bearing airborne particles (HgPM10) at Almadén, Spain: implications for inhalation hazards around old mines. Atmos Environ 39(34):6409–6419

    Article  CAS  Google Scholar 

  • Munthe J, Wangberg I, Iverfeldt A, Lindqvist O, Stromberg D, Sommar J, Gardfeldt K, Petersen G, Ebinghaus R, Prestbo E, Larjava K, Siemens V (2003) Distribution of atmospheric mercury species in Northern Europe: final results from the MOE project. Atmos Environ 37:S9–S20

    Article  CAS  Google Scholar 

  • Pey J, Querol X, Alastuey A, Forastiere F, Stafoggia M (2013) African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos Chem Phys 13:1395–1410

    Article  Google Scholar 

  • Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Huglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch TAJ, Loschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Pandolfi M, Reche C, Pérez N, Minguillón MC, Moreno T, Viana M, Escudero M, Orio A, Pallarés M, Reina F (2014) 2001–2012 trends on air quality in Spain. Sci Total Environ 490(15):957–969

    Article  CAS  Google Scholar 

  • Rumayor M, Lopez-Anton MA, Díaz-Somoano M, Maroto-Valer MM, Richard J, Biester H, Martínez-Tarazona MR (2016) A comparison of devices using thermal desorption for mercury speciation in solids. Talanta 150:272–277

    Article  CAS  Google Scholar 

  • Slemr F, Scheel HE (1998) Trends in atmospheric mercury concentrations at the summit of the Wank mountain, southern Germany. Atmos Environ 32:845–853

    Article  CAS  Google Scholar 

  • Steffen A, Lehnherr I, Cole A, Ariya P, Dastoor A, Durnford D, Kirk J, Pilote M (2015) Atmospheric mercury in the Canadian arctic. Part I: a review of recent field measurements. Sci Total Environ 509-510:3–15

    Article  CAS  Google Scholar 

  • Subir M, Ariya PA, Dastoor APA (2011) Review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters−fundamental limitations and the importance of heterogeneous chemistry. Atmos Environ 45:5664–5676

    Article  CAS  Google Scholar 

  • Wang Z, Zhang X, Chen Z, Zhang Y (2006) Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmos Environ 40:2194–2201

    Article  CAS  Google Scholar 

  • Yttri KE, Aas W, Bjerke A, Cape JN, Cavalli F, Ceburnis D, Dye C, Emblico L, Facchini MC, Forster C, Hanssen JE, Hansson HC, Jennings SG, Maenhaut W, Putaud JP, Tørseth K (2007) Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmos Chem Phys 7:5711–5725

    Article  CAS  Google Scholar 

  • Zhu J, Wang T, Talbot R, Mao H, Yang X, Fu C, Sun J, Zhuang B, Li S, Han Y, Xie M (2014) Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmos Chem Phys 14:2233–2244

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Neil Thompson (PhD CChem MRSC) revised the English style.

Funding

This study was funded by Spanish Ministry of Economy and Competitiveness, projects CTM2012-33918 and CGL2015-67644-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Mª Esbrí.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esbrí, J.M., Izquierdo, C., Martínez-Coronado, A. et al. Particulate matter and particulate-bound mercury in a heavily polluted site related to ancient mining and metallurgy: a proposal for dry deposition modeling based on micrometeorological conditions. Environ Sci Pollut Res 25, 35312–35321 (2018). https://doi.org/10.1007/s11356-018-3470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3470-4

Keywords

Navigation