Environmental Science and Pollution Research

, Volume 25, Issue 32, pp 32756–32766 | Cite as

Independent and interactive effects of reduced seawater pH and oil contamination on subsurface sediment bacterial communities

  • António Louvado
  • Francisco J. R. C. Coelho
  • Hélder Gomes
  • Daniel F. R. Cleary
  • Ângela Cunha
  • Newton C. M. GomesEmail author
Research Article


Ocean acidification may exacerbate the environmental impact of oil hydrocarbon pollution by disrupting the core composition of the superficial (0–1 cm) benthic bacterial communities. However, at the subsurface sediments (approximately 5 cm below sea floor), the local biochemical characteristics and the superjacent sediment barrier may buffer these environmental changes. In this study, we used a microcosm experimental approach to access the independent and interactive effects of reduced seawater pH and oil contamination on the composition of subsurface benthic bacterial communities, at two time points, by 16S rRNA gene-based high-throughput sequencing. An in-depth taxa-specific variance analysis revealed that the independent effects of reduced seawater pH and oil contamination were significant predictors of changes in the relative abundance of some specific bacterial groups (e.g., Firmicutes, Rhizobiales, and Desulfobulbaceae). However, our results indicated that the overall microbial community structure was not affected by independent and interactive effects of reduced pH and oil contamination. This study provides evidence that bacterial communities inhabiting subsurface sediment may be less susceptible to the effects of oil contamination in a scenario of reduced seawater pH.


Oil contamination Benthic bacterial communities Desulfobulbaceae Ocean acidification Climate change Subsurface sediments 



This work was supported by the Foundation for Science and Technology at the Portuguese Ministry of Education and Science [UID/AMB/50017 for research unit CESAM; SFRH/BD/86447/2012 for AL, and SFRH/BPD/92366/2013 for FJRC], which is co-funded by national funds and FEDER within the PT2020 Partnership Agreement and Compete 2020. The ELSS construction was financed by European Funds through COMPETE (FCOMP-01-0124-FEDER-008657) and by National Funds through the Portuguese Science Foundation (FCT) within project PTDC/AAC-CLI/107916/2008.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_3214_MOESM1_ESM.docx (11.9 mb)
ESM 1 (DOCX 12206 kb)


  1. Beman JM, Chow CE, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA (2011) Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci 108:208–213. CrossRefGoogle Scholar
  2. Ben-Yaakov S (1973) pH buffering of pore water of recent anoxic marine sediments. Limnol Oceanogr 18:86–94. CrossRefGoogle Scholar
  3. Braeckman U, Van Colen C, Guilini K, Van Gansbeke D, Soetaert K, Vincx M, Vanaverbeke J (2014) Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near Future Ocean acidification. PLoS One 9:e108153. CrossRefGoogle Scholar
  4. Caldeira K, Wickett ME (2003) Oceanography:anthropogenic carbon and ocean pH. Nature 425:365–365. CrossRefGoogle Scholar
  5. Canadell JG, le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870. CrossRefGoogle Scholar
  6. Chauhan A, Pathak A, Rodolfo-Metalpa R, Milazzo M, Green SJ, Hall-Spencer JM (2015) Metagenomics reveals planktonic bacterial community shifts across a natural CO(2) gradient in the Mediterranean Sea. Genome Announcements 3:e01543–e01514. CrossRefGoogle Scholar
  7. Cheong CJ, Okada M (2001) Effects of spilled oil on the tidal flat ecosystem - evaluation of wave and tidal actions using a tidal flat simulator. Water Sci Technol 43:171–177CrossRefGoogle Scholar
  8. Cleary DFR, Becking LE, Polónia ARM, Freitas RM, Gomes NCM (2015) Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes. Antonie van Leeuwenhoek 107:821–834. CrossRefGoogle Scholar
  9. Coelho FJRC, Rocha RJM, Pires ACC, Ladeiro B, Castanheira JM, Costa R, Almeida A, Cunha Â, Lillebø AI, Ribeiro R, Pereira R, Lopes I, Marques C, Moreira-Santos M, Calado R, Cleary DFR, Gomes NCM (2013) Development and validation of an experimental life support system for assessing the effects of global climate change and environmental contamination on estuarine and coastal marine benthic communities. Glob Chang Biol 19:2584–2595. CrossRefGoogle Scholar
  10. Coelho FJRC, Cleary DFR, Rocha RJM, Calado R, Castanheira JM, Rocha SM, Silva AMS, Simões MMQ, Oliveira V, Lillebø AI, Almeida A, Cunha Â, Lopes I, Ribeiro R, Moreira-Santos M, Marques CR, Costa R, Pereira R, Gomes NCM (2015) Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. Glob Chang Biol 21:1871–1886. CrossRefGoogle Scholar
  11. Coelho FJRC, Cleary DFR, Costa R, Ferreira M, Polónia ARM, Silva AMS, Simões MMQ, Oliveira V, Gomes NCM (2016) Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution. Mol Ecol 25:4645–4659. CrossRefGoogle Scholar
  12. Dang H, Chen C-TA (2017) Ecological energetic perspectives on responses of nitrogen-transforming Chemolithoautotrophic microbiota to changes in the marine environment. Front Microbiol 8.
  13. Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138. CrossRefGoogle Scholar
  14. Dashfield SL, Somerfield PJ, Widdicombe S, Austen MC, Nimmo M (2008) Impacts of ocean acidification and burrowing urchins on within-sediment pH profiles and subtidal nematode communities. J Exp Mar Biol Ecol 365:46–52. CrossRefGoogle Scholar
  15. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. CrossRefGoogle Scholar
  16. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. CrossRefGoogle Scholar
  17. Fahrenfeld N, Cozzarelli IM, Bailey Z, Pruden A (2014) Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Microb Ecol 68:453–462. CrossRefGoogle Scholar
  18. Fernandez-Gomez B, Richter M, Schuler M, Pinhassi J, Acinas SG, Gonzalez JM, Pedros-Alio C (2013) Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7:1026–1037. CrossRefGoogle Scholar
  19. Gattuso JP, Lavigne H (2009) Technical note: approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6:2121–2133. CrossRefGoogle Scholar
  20. Gomes NCM, Borges LR, Paranhos R, Pinto FN, Mendonça-Hagler LCS, Smalla K (2008) Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol 66:96–109. CrossRefGoogle Scholar
  21. Gomes NC et al (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One 5:e14065CrossRefGoogle Scholar
  22. Gomes NCM, Manco SC, Pires ACC, Gonçalves SF, Calado R, Cleary DFR, Loureiro S (2013) Richness and composition of sediment bacterial assemblages in an Atlantic port environment. Sci Total Environ 452–453:172–180. CrossRefGoogle Scholar
  23. Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ (2014) Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME J 8:150–163. CrossRefGoogle Scholar
  24. Hanada S, Sekiguchi Y (2014) The phylum Gemmatimonadetes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer Berlin Heidelberg, Heidelberg, pp 677-681. doi: CrossRefGoogle Scholar
  25. Hoffmann LJ, Breitbarth E, Boyd PW, Hunter KA (2012) Influence of ocean warming and acidification on trace metal biogeochemistry. Mar Ecol Prog Ser 470:191–205CrossRefGoogle Scholar
  26. Indermuhle A et al (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor dome, Antarctica. Nature 398:121–126CrossRefGoogle Scholar
  27. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA. Google Scholar
  28. Kerfahi D, Hall-Spencer JM, Tripathi BM, Milazzo M, Lee J, Adams JM (2014) Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy. Microb Ecol 67:819–828. CrossRefGoogle Scholar
  29. Kirk MF, Jin Q, Haller BR (2016) Broad-scale evidence that pH influences the balance between microbial Iron and sulfate reduction. Groundwater 54:406–413. CrossRefGoogle Scholar
  30. Koschorreck M, Wendt-Potthoff K, Geller W (2003) Microbial sulfate reduction at low pH in sediments of an acidic Lake in Argentina. Environ Sci Technol 37:1159–1162. CrossRefGoogle Scholar
  31. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Unit 10:7. CrossRefGoogle Scholar
  32. Kuever J, Rainey FA, Widdel F (2015) Desulfobulbaceae fam. nov. In: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd.
  33. Laverock B, Kitidis V, Tait K, Gilbert JA, Osborn AM, Widdicombe S (2013) Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification. Philos Trans R Soc Lon Ser B Biol Sci 368:20120441CrossRefGoogle Scholar
  34. Louvado A, Gomes N, Simões M, Almeida A, Cleary D, Cunha A (2015) Polycyclic aromatic hydrocarbons in deep sea sediments: microbe-pollutant interactions in a remote environment. Sci Total Environ 526:312–328CrossRefGoogle Scholar
  35. McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54. CrossRefGoogle Scholar
  36. Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5:51–60 CrossRefGoogle Scholar
  37. Millero FJ (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22:72–85CrossRefGoogle Scholar
  38. Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908. CrossRefGoogle Scholar
  39. Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830. CrossRefGoogle Scholar
  40. Nakazawa MM, Gavazza S, Kato MT, Florencio L (2016) Evaluation of rhamnolipid addition on the natural attenuation of estuarine sediments contaminated with diesel oil. Environ Sci Pollut Res 24:25522–25533. CrossRefGoogle Scholar
  41. Oksanen J et al (2012) Vegan: community ecology PackageR package version 20-3.
  42. Oliveira EB, Nicolodi JL (2017) Oil permeability variations on lagoon sand beaches in the Patos-Guaíba system in Rio Grande do Sul, Brazil. Mar Pollut Bull 115:154–163. CrossRefGoogle Scholar
  43. Oliveira V et al (2014) Halophyte plant colonization as a driver of the composition of bacterial communities in salt marshes chronically exposed to oil hydrocarbons. FEMS Microbiol Ecol 90:647–662. CrossRefGoogle Scholar
  44. Oren A, Xu X-W (2014) The family Hyphomicrobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: alphaproteobacteria and betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, pp 247–281. CrossRefGoogle Scholar
  45. Ortmann AC, Lu Y (2015) Initial community and environment determine the response of bacterial communities to dispersant and oil contamination. Mar Pollut Bull 90:106–114. CrossRefGoogle Scholar
  46. Pertusatti J, Prado AGS (2007) Buffer capacity of humic acid: thermodynamic approach. J Colloid Interface Sci 314:484–489. CrossRefGoogle Scholar
  47. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086. CrossRefGoogle Scholar
  48. Piontek J, Lunau M, Händel N, Borchard C, Wurst M, Engel A (2010) Acidification increases microbial polysaccharide degradation in the ocean. Biogeosciences 7:1615–1624. CrossRefGoogle Scholar
  49. Queirós AM, Taylor P, Cowles A, Reynolds A, Widdicombe S, Stahl H (2015) Optical assessment of impact and recovery of sedimentary pH profiles in ocean acidification and carbon capture and storage research. International Journal of Greenhouse Gas Control 38:110–120. CrossRefGoogle Scholar
  50. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, AustriaGoogle Scholar
  51. Raulf FF, Fabricius K, Uthicke S, Beer D, Abed RM, Ramette A (2015) Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea. Environ Microbiol 17:3678–3691CrossRefGoogle Scholar
  52. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548. CrossRefGoogle Scholar
  53. Rosano-Hernández MC, Ramírez-Saad H, Fernández-Linares L (2012) Petroleum-influenced beach sediments of the Campeche Bank, Mexico: diversity and bacterial community structure assessment. J Environ Manag 95(Supplement):S325–S331. CrossRefGoogle Scholar
  54. Roy AS, Gibbons SM, Schunck H, Owens S, Caporaso JG, Sperling M, Nissimov JI, Romac S, Bittner L, Mühling M, Riebesell U, LaRoche J, Gilbert JA (2013) Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences 10:555–566. CrossRefGoogle Scholar
  55. Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJR, Greenwood J (2007) The effect of biogeochemical processes on pH. Mar Chem 105:30–51. CrossRefGoogle Scholar
  56. Tait K, Laverock B, Shaw J, Somerfield PJ, Widdicombe S (2013) Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment. Environ Microbiol Rep 5:851–860. CrossRefGoogle Scholar
  57. Tans P, Keeling R (2018) NOAA/ESRL ( and Scripps Institution of Oceanography (
  58. Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, Zhou H-W (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl Environ Microbiol 78:8264–8271. CrossRefGoogle Scholar
  59. Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. CrossRefGoogle Scholar
  60. Widdel F, Musat F (2010) Energetic and other quantitative aspects of microbial hydrocarbon utilization. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Heidelberg, pp 729–763. CrossRefGoogle Scholar
  61. Widdicombe S, Dashfield SL, McNeill C, Needham HR, Beesley A, McEvoy A, Øxnevad S, Clarke KR, Berge JA (2009) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol Prog Ser 379:59–75CrossRefGoogle Scholar
  62. Wu X-L, Yu S-L, Gu J, Zhao G-F, Chi C-Q (2009) Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. Int J Syst Evol Microbiol 59:300–305. CrossRefGoogle Scholar
  63. Zeng X, Chen X, Zhuang J (2015) The positive relationship between ocean acidification and pollution. Mar Pollut Bull 91:14–21. CrossRefGoogle Scholar
  64. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163. CrossRefGoogle Scholar
  65. Zhu Q, Aller RC, Fan Y (2006) Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochim Cosmochim Acta 70:4933–4949. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • António Louvado
    • 1
  • Francisco J. R. C. Coelho
    • 1
  • Hélder Gomes
    • 1
  • Daniel F. R. Cleary
    • 1
  • Ângela Cunha
    • 1
  • Newton C. M. Gomes
    • 1
    Email author
  1. 1.Department of Biology & CESAMUniversity of AveiroAveiroPortugal

Personalised recommendations