Skip to main content

Effects of site-specific climatic conditions on the radial growth of the lichen biomonitor Xanthoria parietina

Abstract

The protocols commonly applied in surveys with lichens as biomonitors of airborne trace elements require analyses of samples derived from thalli or parts of thalli grown in the last year before sampling, under the postulation that samples of the same size are of the same age. Unfortunately, the influence of ecological site-specific factors on lichen growth is still largely ignored, so that samples of the same size collected in environmentally and climatically diverse sites might actually differ in age. This work aims at quantifying the influence of climatic conditions on the radial growth rates (RaGRs) of Xanthoria parietina, one of the most popular lichen biomonitors. RaGR was monitored in seven populations distributed along an altitudinal transect of 30 km in the Classical Karst (NE Italy), from 20 to 500 m above sea level. For c. 17 months, lobe growth was measured seasonally with a digital calliper, and site-specific climatic variables were monitored by means of thermo-hygrometric sensors and implemented by meteorological data. Finally, the lobe growth of X. parietina was modelled as a function of 18 environmental variables. Results revealed that thalli of relatively dry sites had significantly lower seasonal RaGR with respect to moister ones. Considering that cumulative precipitations were equally distributed along the transect, it was concluded that RaGR of X. parietina is affected negatively by high air temperatures and positively by high relative humidity. The importance of RaGR variation in lichen bioaccumulation studies is critically discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmadjian V (2001) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis. Springer, Dordrecht

    Google Scholar 

  2. Augusto S, Sierra J, Nadal M, Schuhmacher M (2015) Tracking polycyclic aromatic hydrocarbons in lichens: it's all about the algae. Environ Pollut 207:441–445

    CAS  Article  Google Scholar 

  3. Bargagli R (1998) Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin

    Google Scholar 

  4. Bargagli R, Nimis PL (2002). Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Nimis PL, Scheidegger C, Wolseley PA (eds.) Monitoring with lichens—monitoring lichens. NATO Science Series, IV. Earth and Environmental Sciences, Vol. 7. Kluwer, Dordrecht, pp 295–299

    Chapter  Google Scholar 

  5. Bertuzzi S, Davies L, Power SA, Tretiach M (2013) Why lichens are bad biomonitors of ozone pollution? Ecol Indic 34:391–397

    CAS  Article  Google Scholar 

  6. Bertuzzi S, Pellegrini E, Carniel FC, Incerti G, Lorenzini G, Nali C, Tretiach M (2017) Ozone and desiccation tolerance in chlorolichens are intimately connected: a case study based on two species with different ecology. Environ Sci Pollut Res 24:1–15

    Article  Google Scholar 

  7. Bidussi M, Gauslaa Y, Solhaug KA (2013a) Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. Planta 237:1359–1366

    CAS  Article  Google Scholar 

  8. Bidussi M, Goward T, Gauslaa Y (2013b) Growth and secondary compound investments in the epiphytic lichens Lobaria pulmonaria and Hypogymnia occidentalis transplanted along an altitudinal gradient in British Columbia. Botany 91:621–630

    CAS  Article  Google Scholar 

  9. Brandt A, de Vera JP, Onofri S, Ott S (2015) Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int J Astrobiol 14:411–425

    CAS  Article  Google Scholar 

  10. Branquinho C, Gaio-Oliveira G, Augusto S, Pinho P, Máguas C, Correia O (2008) Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environ Pollut 151:292–299

    CAS  Article  Google Scholar 

  11. Brunialti G, Frati L (2007) Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci Total Environ 387:289–300

    CAS  Article  Google Scholar 

  12. Bubrick P, Galun M (1986) Spore to spore resynthesis of Xanthoria parietina. Lichenologist 18:47–49

    Article  Google Scholar 

  13. Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366

    Article  Google Scholar 

  14. Crabtree D, Ellis CJ (2010) Species interaction and response to wind speed alter the impact of projected temperature change in a montane ecosystem. J Veg Sci 21:744–760

    Google Scholar 

  15. Cuny D, Davranche L, Thomas P, Kempa M, Van Haluwyn C (2004) Spatial and temporal variations of trace element contents in Xanthoria parietina thalli collected in a highly industrialized area in northern France as an element for a future epidemiological study. J Atmos Chem 49:391–401

    CAS  Article  Google Scholar 

  16. Demiray AD, Yolcubal I, Akyol NH, Çobanoğlu G (2012) Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province. Turkey Ecol Indic 18:632–643

    CAS  Article  Google Scholar 

  17. Domínguez-Morueco N, Augusto S, Trabalón L, Pocurull E, Borrull F, Schuhmacher M, Domingo JL, Nadal M (2017) Monitoring PAHs in the petrochemical area of Tarragona County, Spain: comparing passive air samplers with lichen transplants. Environ Sci Pollut Res 24:11890–11900

    Article  Google Scholar 

  18. Dzubaj A, Bačkor M, Tomko J, Peli E, Tuba Z (2008) Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicol Environ Safety 70:319–326

    CAS  Article  Google Scholar 

  19. Eaton S, Ellis CJ (2012) Local experimental growth rates respond to macroclimate for the lichen epiphyte Lobaria pulmonaria. Plant Ecol Divers 5:365–372

    Article  Google Scholar 

  20. Fisher PJ, Proctor MCF (1978) Observations on a season's growth in Parmelia caperata and P. sulcata in South Devon. Lichenologist 10:81–89

    Article  Google Scholar 

  21. Frati L, Santoni S, Nicolardi V, Gaggi C, Brunialti G, Guttova A, Gaudino S, Pati A, Pirintsos SA, Loppi S (2007) Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environ Pollut 146:311–316

    CAS  Article  Google Scholar 

  22. Gaio-Oliveira G, Dahlman L, Máguas C, Palmqvist K (2004) Growth in relation to microclimatic conditions and physiological characteristics of four Lobaria pulmonaria populations in two contrasting habitats. Ecography 27:13–28

    Article  Google Scholar 

  23. Gauslaa Y (2014) Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 46:1–16

    Article  Google Scholar 

  24. Gauslaa Y, Lie M, Solhaug KA, Ohlson M (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147:406–416

    Article  Google Scholar 

  25. Gauslaa Y, Palmqvist K, Solhaug KA, Holien H, Hilmo O, Nybakken L, Myhre LC, Ohlson M (2007) Growth of epiphytic old forest lichens across climatic and successional gradients. Can J For Res 37:1832–1845

    Article  Google Scholar 

  26. Green TGA, Lange OL (1995) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze ED and Caldwell MM (eds) Ecophysiology of photosynthesis, Springer, Berlin, Heidelberg, pp 319–341

    Chapter  Google Scholar 

  27. Hill DJ (1989) The control of the cell cycle in microbial symbionts. New Phytol 112:175–184

    Article  Google Scholar 

  28. Honegger R (1996) Experimental studies of growth and regenerative capacity in the foliose lichen Xanthoria parietina. New Phytol 133:573–581

    Article  Google Scholar 

  29. Honegger R (1998) The lichen symbiosis—what is so spectacular about it? Lichenologist 30:193–212

    Article  Google Scholar 

  30. Honegger R (2003) The impact of different long-term storage conditions on the viability of lichen-forming ascomycetes and their green algal photobiont, Trebouxia spp. Plant Biol 5:324–330

    Article  Google Scholar 

  31. Honegger R, Conconiy S, Kutasi V (1996) Field studies on growth and regenerative capacity in the foliose macrolichen Xanthoria parietina (Teloschistales, Ascomycotina). Plant Biol 109:187–193

    Google Scholar 

  32. Itten B, Honegger R (2010) Population genetics in the homothallic lichen-forming ascomycete Xanthoria parietina. Lichenologist 42:751–761

    Article  Google Scholar 

  33. Jolliffe IT (2002) Principal component in regression analysis. In: Principal component analysis, 2nd edn. Springer, New York, pp 167–198

    Google Scholar 

  34. Jonsson Čabrajić AV, Lidén M, Lundmark T, Ottosson-Lofvenius M, Palmqvist K (2010) Modelling hydration and photosystem II activation in relation to in situ rain and humidity patterns: a tool to compare performance of rare and generalist epiphytic lichens. Plant Cell Environ 33:840–850

    Google Scholar 

  35. Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, Cambridge

    Google Scholar 

  36. Kodnik D, Candotto Carniel F, Licen S, Tolloi A, Barbieri P, Tretiach M (2015) Seasonal variations of PAHs content and distribution patterns in a mixed land use area: a case study with the transplanted lichen Pseudevernia furfuracea. Atmos Environ 113:255–263

    CAS  Article  Google Scholar 

  37. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  38. Lange OL (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198:55–70

    Google Scholar 

  39. Lange OL, Green TA (2008) Diel and seasonal courses of ambient carbon dioxide concentration and their effect on productivity of the epilithic lichen Lecanora muralis in a temperate, suburban habitat. Lichenologist 40:449–462

    Article  Google Scholar 

  40. Lange OL, Kilian E, Ziegler H (1986) Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    CAS  Article  Google Scholar 

  41. Larsson P, Solhaug KA, Gauslaa Y (2012) Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria. New Phytol 194:991–1000

    Article  Google Scholar 

  42. Loppi S, Nelli L, Ancora S, Bargagli R (1997) Accumulation of trace elements in the peripheral and central parts of a foliose lichen thallus. Bryologist 100:251–253

    CAS  Article  Google Scholar 

  43. Moxham TH (1981) Growth rates of Xanthoria parietina and their relationship to substrate texture. Cryptogamie Bryol Lichénol 2:171–180

    Google Scholar 

  44. Muggia L, Fleischhacker A, Kopun T, Grube M (2016) Extremotolerant fungi from alpine rock lichens and their phylogenetic relationships. Fungal Divers 76:119–142

    Article  Google Scholar 

  45. Munzi S, Cruz C, Maia R, Máguas C, Perestrello-Ramos MM, Branquinho C (2017) Intra-and inter-specific variations in chitin in lichens along a N-deposition gradient. Environ Sci Pollut Res 24:1–7

    Article  Google Scholar 

  46. Nimis PL, Andreussi S, Pittao E (2001) The performance of two lichen species as bioaccumulators of trace metals. Sci Total Environ 275:43–51

    CAS  Article  Google Scholar 

  47. Nimis PL, Bargagli R (1998) Linee-guida per l’utilizzo di licheni epifiti come bioaccumulatori di metalli in traccia In: Piccini and Salvati (eds) atti del workshop: "Biomonitoraggio della qualità dell'aria sul territorio nazionale", Roma, pp 279–287

  48. Olsen HB, Berthelsen K, Andersen HV, Søchting U (2010) Xanthoria parietina as a monitor of ground-level ambient ammonia concentrations. Environ Pollut 158:455–461

    CAS  Article  Google Scholar 

  49. Osmer FVG , 2016 Climate report for the twenty-year period 1996–2016 http://www.osmer.fvg.it/home.php

  50. Palmqvist K (2000) Tansley review no. 117. Carbon economy in lichens. New Phytol 148:11–36

    CAS  Article  Google Scholar 

  51. Palmqvist K, Dahlman L, Jonsson A, Nash TH (2008) The carbon economy of lichens. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 182–215

    Chapter  Google Scholar 

  52. Piccotto M, Bidussi M, Tretiach M (2011) Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Environ Exp Bot 73:102–107

    CAS  Article  Google Scholar 

  53. Poldini L (1989) La Vegetazione del Carso triestino ed isontino. Lint, Trieste

    Google Scholar 

  54. Richardson DHS (1967) The transplantation of lichen thalli to solve some taxonomic problems in Xanthoria parietina (L) Th Fr. Lichenologist 3:386–391

    Article  Google Scholar 

  55. Rossbach M, Lambrecht S (2006) Lichens as biomonitors: global, regional and local aspects. Croatica Chemica Acta 79:119–124

    CAS  Google Scholar 

  56. Scherrer S, Zippler U, Honegger R (2005) Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, Lecanoromycetes). Fungal Genet Biol 42:976–988

    CAS  Article  Google Scholar 

  57. Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20

    CAS  Article  Google Scholar 

  58. Sundberg B, Ekblad A, Näsholm T, Palmqvist K (1999) Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations. Funct Ecol 13:119–125

    Article  Google Scholar 

  59. Tretiach M, Bertuzzi S, Carniel FC, Virgilio D (2013) Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia 173:649–663

    Article  Google Scholar 

  60. van Dobben HF, Wolterbeek HT, Wamelink GWW, ter Braak CJF (2001) Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ Pollut 112:163–169

    Article  Google Scholar 

  61. Williamson BJ, Mikhailova I, Purvis OW, Udachin V (2004) SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia. Sci Total Environ 322:139–154

    CAS  Article  Google Scholar 

Web references

  1. ARPA FVG–OSMER and GRN, 2018 http://www.meteo.fvg.it/home.php

  2. Regione FVG, 2007 Piano regionale di miglioramento della qualità dell’aria http://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/ambiente-territorio/allegati/DGR913ALL1.pdf

Download references

Acknowledgments

The authors are grateful to Dr. Massimo Bidussi (Grenoble) and Silvia Ongaro (Trieste) for their valuable help in field work, to Enrico Tordoni (Trieste) for his precious statistical advices and to Elva Cecconi and Pier Luigi Nimis (Trieste) for critically reading the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauro Tretiach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 412 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fortuna, L., Tretiach, M. Effects of site-specific climatic conditions on the radial growth of the lichen biomonitor Xanthoria parietina. Environ Sci Pollut Res 25, 34017–34026 (2018). https://doi.org/10.1007/s11356-018-3155-z

Download citation

Keywords

  • Altitude
  • Air pollution
  • Biomonitoring protocols
  • Climate
  • Trace elements
  • Water availability