Abstract
This study reports the contamination of Indian sea salts with different microplastic particles, as a consequence of using contaminated sea water. Samples from all eight brands of investigated sea salts were found contaminated, and concentrations of these particles ranged from 103 ± 39 to 56 ± 49 particles kg−1 of salt. Both fibers and fragments were observed with large variation in size. Eighty percent of the extracted fibers and the fragments were smaller than 2000 μm and 500 μm respectively. Extracted particles were mostly polyesters, polyethylene terephthalate (PET), polyamide, polyethylene, and polystyrene. Their total mass concentration was also estimated as 63.76 μg kg−1 of salt. These results are significant, since India is a leading producer and exporter of sea salts. A simple sand filtration of artificially contaminated sea water could effectively (> 85% removal by weight and > 90% removal by number) remove these microplastics and has the potential for preventing the transfer of microplastics into the salt from contaminated sea waters.
This is a preview of subscription content,
to check access.







References
Abel SMA, Werner K, Christiane Z et al (2017) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416. https://doi.org/10.1111/gcb.14020
Anderson JC, Park BJ, Palace VP (2016) Microplastics in aquatic environments: implications for Canadian ecosystems. Environ Pollut 218:269–280. https://doi.org/10.1016/j.envpol.2016.06.074
Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
Au YS, Lee MC, Weinstein EJ et al (2017) Trophic transfer of microplastics in aquatic ecosystems: identifying critical research needs. Integr Environ Assess Manag 13:505–509. https://doi.org/10.1002/ieam.1907
Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64:2782–2789. https://doi.org/10.1016/j.marpolbul.2012.09.010
Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140:14–21. https://doi.org/10.1016/j.ecss.2014.01.004
Barboza LGA, Dick Vethaak A, Lavorante BRBO, Lundebye AK, Guilhermino L (2018) Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336–348. https://doi.org/10.1016/j.marpolbul.2018.05.047
Boris J (2017) Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr Environ Assess Manag 13:510–515. https://doi.org/10.1002/ieam.1913
Desforges J-PW, Galbraith M, Dangerfield N, Ross PS (2014) Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 79:94–99. https://doi.org/10.1016/j.marpolbul.2013.12.035
Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. https://doi.org/10.1016/j.watres.2015.02.012
GoI (2017) Annual report 2016–17, Salt Department, Ministry of Commerce & Industry, Government of India. 1–109
Gündoğdu S (2018) Contamination of table salts from Turkey with microplastics. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 35:1–9. https://doi.org/10.1080/19440049.2018.1447694
Hernandez E, Nowack B, Mitrano DM (2017) Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing. Environ Sci Technol 51:7036–7046. https://doi.org/10.1021/acs.est.7b01750
Iñiguez ME, Conesa JA, Fullana A (2017) Microplastics in Spanish table salt. Sci Rep 7:1–7. https://doi.org/10.1038/s41598-017-09128-x
Ivar do Sul JA, Costa MF, Fillmann G (2014) Microplastics in the pelagic environment around oceanic islands of the Western Tropical Atlantic Ocean. Water Air Soil Pollut 225:2004. https://doi.org/10.1007/s11270-014-2004-z
Jayasiri HB, Purushothaman CS, Vennila A (2013) Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar Pollut Bull 77:107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024
Karami A, Golieskardi A, Keong Choo C, Larat V, Galloway TS, Salamatinia B (2017) The presence of microplastics in commercial salts from different countries. Sci Rep 7:46173
Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13:e0194970
Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195. https://doi.org/10.1016/j.envpol.2015.09.018
Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam Part A 30:2136–2140. https://doi.org/10.1080/19440049.2013.843025
Martin J, Lusher A, Thompson RC, Morley A (2017) The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci Rep 7:10772. https://doi.org/10.1038/s41598-017-11079-2
Naidu SA, Ranga Rao V, Ramu K (2018) Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea. Environ Geochem Health doi:https://doi.org/10.1007/s10653-017-0062-z. doi: https://doi.org/10.1007/s10653-017-0062-z
Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025
Nelms SE, Galloway TS, Godley BJ, Jarvis DS, Lindeque PK (2018) Investigating microplastic trophic transfer in marine top predators. Environ Pollut 238:999–1007. https://doi.org/10.1016/j.envpol.2018.02.016
Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126. https://doi.org/10.1016/j.envpol.2017.11.043
Reddy MS, Basha S, Adimurthy S, Ramachandraiah G (2006) Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuar Coast Shelf Sci 68:656–660. https://doi.org/10.1016/j.ecss.2006.03.018
Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:1362. https://doi.org/10.1038/s41598-017-01594-7
Rist S, Carney Almroth B, Hartmann NB, Karlsson TM (2018) A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ 626:720–726. https://doi.org/10.1016/j.scitotenv.2018.01.092
Scherer C, Brennholt N, Reifferscheid G, Wagner M (2017) Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci Rep 7:17006. https://doi.org/10.1038/s41598-017-17191-7
Sedlak D (2017) Three lessons for the microplastics voyage. Environ Sci Technol 51:7747–7748. https://doi.org/10.1021/acs.est.7b03340
Sharma S, Chatterjee S (2017) Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24:21530–21547. https://doi.org/10.1007/s11356-017-9910-8
Song YK, Hong SH, Jang M, Kang JH, Kwon OY, Han GM, Shim WJ (2014) Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol 48:9014–9021. https://doi.org/10.1021/es501757s
Sun X, Li Q, Zhu M, Liang J, Zheng S, Zhao Y (2017) Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Mar Pollut Bull 115:217–224. https://doi.org/10.1016/j.marpolbul.2016.12.004
Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764. https://doi.org/10.1021/es071737s
Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Bjorn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364:2027 LP-2045, 364, 2027, 2045
Tosetto L, Williamson JE, Brown C (2017) Trophic transfer of microplastics does not affect fish personality. Anim Behav 123:159–167. https://doi.org/10.1016/j.anbehav.2016.10.035
Sebille E van, Wilcox C, Lebreton L, et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10:124006
Vroom RJE, Koelmans AA, Besseling E, Halsband C (2017) Aging of microplastics promotes their ingestion by marine zooplankton. Environ Pollut 231:987–996. https://doi.org/10.1016/j.envpol.2017.08.088
Wang F, Shih KM, Li XY (2015) The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 119:841–847. https://doi.org/10.1016/j.chemosphere.2014.08.047
Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634–6647. https://doi.org/10.1021/acs.est.7b00423
Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P (2015) Microplastic pollution in table salts from China. Environ Sci Technol 49:13622–13627. https://doi.org/10.1021/acs.est.5b03163
Zhang K, Xiong X, Hu H, Wu C, Bi Y, Wu Y, Zhou B, Lam PKS, Liu J (2017) Occurrence and characteristics of microplastic pollution in Xiangxi bay of Three Gorges Reservoir. China Environ Sci Technol 51:3794–3801. https://doi.org/10.1021/acs.est.7b00369
Zhao S, Zhu L, Wang T, Li D (2014) Suspended microplastics in the surface water of the Yangtze estuary system, China: first observations on occurrence, distribution. Mar Pollut Bull 86:562–568. https://doi.org/10.1016/j.marpolbul.2014.06.032
Acknowledgements
Sophisticated Analytical Instrument Facility (SAIF) at IIT Bombay, established with the support of Department of Science and Technology, Government of India, is acknowledged for providing access to the FTIR facility.
Funding
This work was partially supported by the IIT Bombay Seed Grant (16IRCCSG018).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Philippe Garrigues
Rights and permissions
About this article
Cite this article
Seth, C.K., Shriwastav, A. Contamination of Indian sea salts with microplastics and a potential prevention strategy. Environ Sci Pollut Res 25, 30122–30131 (2018). https://doi.org/10.1007/s11356-018-3028-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-018-3028-5