Skip to main content

An integrated modelling framework and a modified method for evaluating non-carcinogenic health risks from nonylphenol-contaminated food consumption in Long An, Vietnam

Abstract

This study proposed an integrated modelling framework and a modified method for evaluating non-carcinogenic health risks from nonylphenol (NP)-contaminated food consumption. First, a fugacity-based multimedia model and a food web bioaccumulation model were adopted to predict the distribution of NP in the Can Giuoc river and the bioaccumulative concentrations in biota. Next, local people’s exposure to NP was quantified using the accumulative concentrations and the data of fishery products intake from a questionnaire survey distributed among 203 local people. Then, human health risk was evaluated in terms of fishery products intake and intake frequency which were each derived from the same survey. The study revealed that human health risk would exist, although the obtained bioaccumulation factors for the consumed organisms were lower than the bioaccumulation criteria. Consuming 141 g or more per serving of riverine food products resulted in an average NP intake exceeding 0.005 mg/kg of body weight per day among 45–73% of the local adults, of whom pregnant women or young and potential mothers accounted for 10–21%. Seventy-nine percent was the highest rate of the population to be at risk under medium river flow rate when food-intake amount and intake frequency were taken into account. Ingesting 70 g per serving of more contaminated species, such as whiteleg shrimp and small fish, less frequently could lead to less risk exposure than ingesting 267 g per serving of less contaminated species, such as sand goby and climbing pearch, more frequently. By coupling food intake with intake frequency, the modified method enables the studying of human health risk from NP-contaminated food consumption to be conducted with more care, and so benefits risk communication at local level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ademollo N, Ferrara F, Delise M, Fabietti F, Funari E (2008) Nonylphenol and octylphenol in human breast milk. Environ Int 34:984–987. https://doi.org/10.1016/j.envint.2008.03.001

    CAS  Article  Google Scholar 

  • Ahel M, Giger W (1993) Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere 26:1471–1478. https://doi.org/10.1016/0045-6535(93)90214-P

    CAS  Article  Google Scholar 

  • Ahel M, Giger W, Koch M (1994) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment - I. Occurrence and transformation in sewage treatment. Water Res 28:1131–1142

    CAS  Article  Google Scholar 

  • Alberto M, Daniela F, Chiara F (2015) Sustainability, security and safety in the feed-to-fish chain: focus on toxic contamination. IJNFS 4(2–2):6–24. https://doi.org/10.11648/j.ijnfs.s.2015040202.12

    CAS  Article  Google Scholar 

  • Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343–2355. https://doi.org/10.1897/03-438

    CAS  Article  Google Scholar 

  • Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297. https://doi.org/10.1139/a06-005

    CAS  Article  Google Scholar 

  • Arnot JA, Mackay D, Parkerton TF, Bonnell M (2008) A database of fish biotransformation rates for organic chemicals. Environ Toxicol Chem 27:2263–2270. https://doi.org/10.1897/08-058.1

    CAS  Article  Google Scholar 

  • Burkhard LP (2003) Factors influencing the design of bioaccumulation factor and biota-sediment accumulation factor field studies. Environ Toxicol Chem 22:351–360. https://doi.org/10.1002/etc.5620220216

    CAS  Article  Google Scholar 

  • Chang BV, Yu CH, Yuan SY (2004) Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere 55:493–500. https://doi.org/10.1016/j.chemosphere.2004.01.004

    CAS  Article  Google Scholar 

  • Chen G-W, Ding W-H, Ku H-Y, Chao H-R, Chen H-Y, Huang M-C, Wang S-L (2010) Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food Chem Toxicol 48:1939–1944. https://doi.org/10.1016/j.fct.2010.04.038

    CAS  Article  Google Scholar 

  • Cheung KC, Leung HM, Kong KY, Wong MH (2007) Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere 66:460–468. https://doi.org/10.1016/j.chemosphere.2006.06.008

    CAS  Article  Google Scholar 

  • Cosnefroy A, Brion F, Guillet B, Laville N, Porcher JM, Balaguer P, Aït-Aïssa S (2009) A stable fish reporter cell line to study estrogen receptor transactivation by environmental (xeno)estrogens. Toxicol in Vitro 23:1450–1454. https://doi.org/10.1016/j.tiv.2009.07.003

    CAS  Article  Google Scholar 

  • Cowgill UM, Emmel HW, Hopkins DL, Takahashi IT, Parker WM (1986) Variation in chemical composition, reproductive success and body weight of Daphnia magna in relation to diet. Int Rev Gesamten Hydrobiol 71:79–99. https://doi.org/10.1002/iroh.19860710111

    CAS  Article  Google Scholar 

  • De Doncker L (2009) A fundamental study on exchange processes in river ecosystems. Doctoral Thesis. Ghent University

  • De Weert J, Streminska M, Hua D, Grotenhuis T, Langenhoff A, Rijnaarts H (2010) Nonylphenol mass transfer from field-aged sediments and subsequent biodegradation in reactors mimicking different river conditions. J Soils Sediments 10:77–88. https://doi.org/10.1007/s11368-009-0146-1

    CAS  Article  Google Scholar 

  • De Weert J, Viñas M, Grotenhuis T, Rijnaarts H, Langenhoff A (2009) Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments. Appl Microbiol Biotechnol 86:761–771. https://doi.org/10.1007/s00253-009-2394-9

    CAS  Article  Google Scholar 

  • Diehl J, Johnson SE, Xia K, West A, Tomanek L (2012) The distribution of 4-nonylphenol in marine organisms of North American Pacific Coast estuaries. Chemosphere 87:490–497. https://doi.org/10.1016/j.chemosphere.2011.12.040

    CAS  Article  Google Scholar 

  • Dincer MT, Aydin I (2014) Proximate composition and mineral and fatty acid profiles of male and female jinga shrimps (Metapenaeus affinis, H. Milne Edwards, 1837). Turk J Vet Anim Sci 38:445–451

    CAS  Article  Google Scholar 

  • Duah KA (1998) Risk assessment in environmental management. John Wiley & Sons Ltd., England

    Google Scholar 

  • Duc PA, Linh NTM, Thanh DM (2016) Zooplankton from Can Giuoc river in southern Vietnam. GeoScience Engineering LXII:27–33. https://doi.org/10.1515/gse-2016-0022

  • Duong CN et al (2010) Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere 78:286–293

    CAS  Article  Google Scholar 

  • European Chemical Bureau (2002) European Union risk assessment report: 4-nonylphenol (branched) and nonylphenol EUR 20387 EN, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Brussels, Belgium

  • European Parliament and Council (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Strasbourg, France

  • Gao Z, Xu J, Xian Q, Feng J, Chen X, Yu H (2009) Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze river, East China. Chemosphere 75:1273–1279. https://doi.org/10.1016/j.chemosphere.2009.01.065

    CAS  Article  Google Scholar 

  • Gobas FAPC, de Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integr Environ Assess Manag 5:624–637. https://doi.org/10.1897/IEAM_2008-089.1

    CAS  Article  Google Scholar 

  • Gobas FA, MacLean LG (2003) Sediment-water distribution of organic contaminants in aquatic ecosystems: the role of organic carbon mineralization. Environ Sci Technol 37:735–741

  • Gobas FA, McNeil EJ, Lovett-Doust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25:924–929

    CAS  Article  Google Scholar 

  • Government of Canada (1999) Canadian Environmental Protection Act (1999), Canada

  • Government of Canada (2000) Persistence and bioaccumulation regulations (SOR/2000-107), Canada

  • Greenfield BK, Melwani AR, Bay SM (2015) A tiered assessment framework to evaluate human health risk of contaminated sediment. Integr Environ Assess Manag 11:459–473. https://doi.org/10.1002/ieam.1610

    CAS  Article  Google Scholar 

  • Gross-Sorokin MY, Grist EPM, Cooke M, Crane M (2003) Uptake and depuration of 4-nonylphenol by the benthic invertebrate Gammarus pulex: how important is feeding rate? Environ Sci Technol 37:2236–2241. https://doi.org/10.1021/es020092n

    CAS  Article  Google Scholar 

  • Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T (2002) Endocrine disrupting nonylphenols are ubiquitous in food. Environ Sci Technol 36:1676–1680. https://doi.org/10.1021/es010199v

    CAS  Article  Google Scholar 

  • Gyllenhammar I, Glynn A, Darnerud PO, Lignell S, Van Delft R, Aune M (2012) 4-Nonylphenol and bisphenol A in Swedish food and exposure in Swedish nursing women. Environ Int 43:21–28. https://doi.org/10.1016/j.envint.2012.02.010

    CAS  Article  Google Scholar 

  • Ha VTT, Phep HT (2011) Application of automatic measurement equipment to investigate the impact of Ho Chi Minh City wastewater on the water quality of Can Giuoc river (in Vietnamese). Vietnal Journal of Science and Technology 49:107–116

    Google Scholar 

  • Hanh DT, Kadomami K, Matsuura N, Trung NQ (2014) Screening analysis of a thousand micro-pollutants in Vietnamese rivers. Southeast Asian Water Environ 5:195–202

  • Honda H, Kikuchi K (2002) Nitrogen budget of polychaete Perinereis nuntia vallata fed on the feces of Japanese flounder. Fish Sci 68:1304–1308. https://doi.org/10.1046/j.1444-2906.2002.00568.x

    CAS  Article  Google Scholar 

  • Hu J, Jin F, Wan Y, Yang M, An L, An W, Tao S (2005) Trophodynamic behavior of 4-nonylphenol and nonylphenol polyethoxylate in a marine aquatic food web from Bohai Bay, North China: comparison to DDTs. Environ Sci Technol 39:4801–4807. doi:https://doi.org/10.1021/es048735h

  • Huang YF et al (2014) Nonylphenol in pregnant women and their matching fetuses: placental transfer and potential risks of infants. Environ Res 134:143–148. https://doi.org/10.1016/j.envres.2014.07.004

    CAS  Article  Google Scholar 

  • Islam MN, Joadder MAR (2005) Seasonal variation of the proximate composition of freshwater gobi, Glossogobius giuris (Hamilton) from the river Padma. Pak J Biol Sci 8:532–536

    Article  Google Scholar 

  • Juntaropakorn M, Yakupitiyage A (2014) Phenomenon on fishing down marine food web in East Coast Gulf of Thailand. APJSAFE 2:1–6

    Google Scholar 

  • Kaur M(2010) Studies on muscle lipid fatty acid profiles of some cultured carp species. Doctoral Thesis. Punjab Agricultural University

  • Kawarazuka N, Béné C (2011) The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr 14:1927–1938. https://doi.org/10.1017/S1368980011000814

    Article  Google Scholar 

  • Kim SK, Kim BK, Shim JH, Gil JE, Yoon YD, Kim JH (2006) Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol Sci 94:310–321. https://doi.org/10.1093/toxsci/kfl114

    CAS  Article  Google Scholar 

  • Korsman JC, Schipper AM, De Vos MG, Van Den Heuvel-Greve MJ, Vethaak AD, De Voogt P, Hendriks AJ (2015) Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains. Chemosphere 138:33–39. https://doi.org/10.1016/j.chemosphere.2015.05.040

    CAS  Article  Google Scholar 

  • Kukkonen J, Landrum PF (1994) Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (oligochaeta). Environ Toxicol Chem 13:1457–1468. https://doi.org/10.1002/etc.5620130909

    CAS  Article  Google Scholar 

  • Limsuwatthanathamrong M, Sooksai S, Chunhabundit S, Noitung S, Ngamrojanavanich N, Petsom A (2012) Fatty acid profile and lipid composition of farm-raised and wild-caught sand worms, Perinereis nuntia, the diet for marine shrimp broodstock. Asian Journal of Animal Science 6:65–75

    CAS  Article  Google Scholar 

  • Liu Y, Dai X, Wei J (2013) Toxicity of the xenoestrogen nonylphenol and its biodegradation by the alga Cyclotella caspia. J Environ Sci 25:1662–1671. https://doi.org/10.1016/S1001-0742(12)60182-X

    CAS  Article  Google Scholar 

  • Lu Y-Y, Chen M-L, Sung F-C, Paulus Shyi-Gang W, Mao IF (2007) Daily intake of 4-nonylphenol in Taiwanese. Environ Int 33:903–910. https://doi.org/10.1016/j.envint.2007.04.008

    CAS  Article  Google Scholar 

  • Lu Z, Gan J (2014) Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship. Environ Sci Technol 48:1008–1014. https://doi.org/10.1021/es403950y

    CAS  Article  Google Scholar 

  • Mackay D (2001) Multimedia environmental models: the fugacity approach. CRC press, Boca Raton

    Book  Google Scholar 

  • Mackintosh CE, Maldonado J, Hongwu J, Hoover N, Chong A, Ikonomou MG, Gobas FAPC (2004) Distribution of phthalate esters in a marine aquatic food web: comparison to polychlorinated biphenyls. Environ Sci Technol 38:2011–2020. https://doi.org/10.1021/es034745r

    CAS  Article  Google Scholar 

  • Maenpaa K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (oligochaeta) and Chironomus riparius (insecta). Aquat Toxicol 77:329–338

    CAS  Article  Google Scholar 

  • Magali H et al (2008) Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environ Toxicol Chem 27:2169–2178. https://doi.org/10.1897/08-071.1

    Article  Google Scholar 

  • Manzano MA, Perales JA, Sales D, Quiroga JM (1999) The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water. Water Res 33:2593–2600. https://doi.org/10.1016/S0043-1354(98)00480-1

    CAS  Article  Google Scholar 

  • Mao Z, Zheng YL, Zhang YQ (2010) Behavioral impairment and oxidative damage induced by chronic application of nonylphenol. Int J Mol Sci 12:114–127. https://doi.org/10.3390/ijms12010114

    CAS  Article  Google Scholar 

  • Minh NH et al (2006) Contamination by polybrominated diphenyl ethers and persistent organochlorines in catfish and feed from Mekong River Delta, Vietnam. Environ Toxicol Chem 25:2700–2708. https://doi.org/10.1897/05-600R.1

    CAS  Article  Google Scholar 

  • Minh NH et al (2007) Persistent organic pollutants in sediments from Sai Gon-Dong Nai river basin, Vietnam: levels and temporal trends. Arch Environ Contam Toxicol 52:458–465. https://doi.org/10.1007/s00244-006-0157-5

    CAS  Article  Google Scholar 

  • Müller S, Schmid P, Schlatter C (1998) Pharmacokinetic behavior of 4-nonylphenol in humans. Environ Toxicol Pharmacol 5:257–265. https://doi.org/10.1016/S1382-6689(98)00009-X

    Article  Google Scholar 

  • Nielsen E, Ostergaard G, Thorup I, Ladefoged O, Jelnes J (2000) Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates, tricresyl phosphates and benzoic acid. Danish Environmental Protection Agency, Copenaghen

    Google Scholar 

  • Niu Y, Zhang J, Duan H, Wu Y, Shao B (2015) Bisphenol A and nonylphenol in foodstuffs: Chinese dietary exposure from the 2007 total diet study and infant health risk from formulas. Food Chem 167:320–325. https://doi.org/10.1016/j.foodchem.2014.06.115

    CAS  Article  Google Scholar 

  • Nurulnadia MY, Koyama J, Uno S, Kokushi E, Bacolod ET, Ito K, Chuman Y (2013) Bioaccumulation of dietary endocrine disrupting chemicals (EDCs) by the polychaete, Perinereis nuntia. Bull Environ Contam Toxicol 91:372–376. https://doi.org/10.1007/s00128-013-1073-9

    CAS  Article  Google Scholar 

  • Nurulnadia MY et al (2014) Accumulation of endocrine disrupting chemicals (EDCs) in the polychaete Paraprionospio sp. from the Yodo river mouth, Osaka Bay, Japan. Environ Monit Assess 186:1453–1463. https://doi.org/10.1007/s10661-013-3466-y

    CAS  Article  Google Scholar 

  • Nyman A-M, Hintermeister A, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PLoS One 8:e62472

    CAS  Article  Google Scholar 

  • Osimitz TG, Droege W, Driver JH (2015) Human risk assessment for nonylphenol. Hum Ecol Risk Assess 21:1903–1919. https://doi.org/10.1080/10807039.2014.999520

    CAS  Article  Google Scholar 

  • Phu VV, Dao LT (2013) Reproductive characteristics of Acanthopagrus latus (Houttuyn, 1782) in coastal zone of Thua Thien Hue province (in Vietnamese). Hue University Journal of Science: Agriculture and Rural Development 64

  • Phung NK et al (2014) Building a map database of meteorology and hydrology conditions of Ho Chi Minh City (in Vietnamese). Department of Science and Technology of Ho Chi Minh City, Ho Chi Minh, Vietnam

    Google Scholar 

  • Preuss TG, Telscher M, Ratte HT (2008) Life stage-dependent bioconcentration of a nonylphenol isomer in Daphnia magna. Environ Pollut 156:1211–1217. https://doi.org/10.1016/j.envpol.2008.03.018

    CAS  Article  Google Scholar 

  • Radomyski A, Giubilato E, Suciu NA, Critto A, Ciffroy P (2018) Modelling bioaccumulation in aquatic organisms and in mammals. In: Ciffroy P, Tediosi A, Capri E (eds) Modelling the fate of chemicals in the environment and the human body. Springer International Publishing, Cham, pp 191–213. https://doi.org/10.1007/978-3-319-59502-3_9

    Chapter  Google Scholar 

  • Raecker T, Thiele B, Boehme RM, Guenther K (2011) Endocrine disrupting nonyl- and octylphenol in infant food in Germany: considerable daily intake of nonylphenol for babies. Chemosphere 82:1533–1540. https://doi.org/10.1016/j.chemosphere.2010.11.065

    CAS  Article  Google Scholar 

  • Razia S, Maegawa Y, Tamotsu S, Oishi T (2006) Histological changes in immune and endocrine organs of quail embryos: exposure to estrogen and nonylphenol. Ecotoxicol Environ Saf 65:364–371. https://doi.org/10.1016/j.ecoenv.2005.07.026

    CAS  Article  Google Scholar 

  • Rico A (2014) Environmental risk assessment of veterinary medicines used in Asian aquaculture. Doctoral Thesis. Wageningen University

  • Sanatan S, Dixit PK, Patra AK (2016) Biochemical analysis of lipids and proteins in three freshwater teleosts (Clarias batrachus, Channa punctatus, Anabas testudineus). Res J Recent Sci 5:24–33

    Google Scholar 

  • Sarigiannis DA, Hansen U (2012) Considering the cumulative risk of mixtures of chemicals - a challenge for policy makers. Environ Health 11:S18. https://doi.org/10.1186/1476-069x-11-s1-s18

    Article  Google Scholar 

  • Shang DY, Macdonald RW, Ikonomou MG (1999) Persistence of nonylphenol ethoxylate surfactants and their primary degradation products in sediments from near a municipal outfall in the Strait of Georgia, British Columbia, Canada. Environ Sci Technol 33:1366–1372

    CAS  Article  Google Scholar 

  • Shao B, Hu J, Yang M, An W, Tao S (2005) Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Arch Environ Contam Toxicol 48:467–473. https://doi.org/10.1007/s00244-003-0266-3

    CAS  Article  Google Scholar 

  • Sise S, Uguz C (2017) Nonylphenol in human breast milk in relation to sociodemographic variables, diet, obstetrics histories and lifestyle habits in a Turkish population. Iran J Public Health 46:491–499

    Google Scholar 

  • Southern Institute of Fisheries Economics and Planning [SIFEP] (2013) Fisheries development planning for Long An province to 2020 (in Vietnamese). Ho Chi Minh, Vietnam

    Google Scholar 

  • Staniszewska M et al (2014) Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (Southern Baltic). Arch Environ Contam Toxicol 67:335–347. https://doi.org/10.1007/s00244-014-0023-9

    CAS  Article  Google Scholar 

  • Staples CA, Williams JB, Blessing RL, Varineau PT (1999) Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol. Chemosphere 38:2029–2039. https://doi.org/10.1016/S0045-6535(98)00415-9

    CAS  Article  Google Scholar 

  • Strady E et al (2017) Spatial variation and risk assessment of trace metals in water and sediment of the Mekong Delta. Chemosphere 179:367–378. https://doi.org/10.1016/j.chemosphere.2017.03.105

    CAS  Article  Google Scholar 

  • Sutcliffe D, Carrick T, Willoughby L (1981) Effects of diet, body size, age and temperature on growth rates in the amphipod Gammarus pulex. Freshw Biol 11:183–214

    Article  Google Scholar 

  • Tam LTM, Dan NP, Tuc DQ, Hao NH, Chi DHL (2016) Presence of e-EDCs in surface water and effluents of pollution sources in Sai Gon and Dong Nai river basin. Sustainable Environment Research 26:20–27. https://doi.org/10.1016/j.serj.2015.09.001

  • Tanghe T, Devriese G, Verstraete W (1998) Nonylphenol degradation in lab scale activated sludge units is temperature dependent. Water Res 32:2889–2896

    CAS  Article  Google Scholar 

  • Thoeye C, Van Eyck K, Bixio D, Weemaes M, De Gueldre G (2003) Methods used for health risk assessment. World Health Organization, Copenhagen

    Google Scholar 

  • Tri TM, Anh DH, Hoai PM, Minh NH, Nam VD, Viet PH, Minh TB (2016) Emerging endocrine disrupting chemicals and pharmaceuticals in Vietnam: A review of environmental occurrence and fate in aquatic and indoor environments. In: Loganathan BG, Khim JS, Kodavanti PR, Masunaga S (eds) Persistent Organic Chemicals in the Environment: Status and Trends in the Pacific Basin Countries II. ACS Symposium Series, vol 1244. American Chemical Society, Washington DC, pp 223–253. https://doi.org/10.1021/bk-2016-1244.ch010

  • Tuan NM, Lanh HTN, Phuong NT, Dinh TD (2014) Some reproductive biological characteristics of the Glossogobius aureus (Akihito & Meguro, 1975) distributed in Ben Tre coastal areas (in Vietnamese). Can Tho University Journal of Science 2:169–176

  • USEPA (2014) AQUATOX 3.1 plus study database. Retrieved from https://www.epa.gov/exposureassessment-models/aquatox-31-download-page#download

  • Viet PH, Lieu TT, Minh NH, Minh TB, Tanabe S (2006) Widespread contamination by persistent toxic substances in Vietnam and their implications on environmental quality and human health. Coast Mar Sci 30:396–400

    Google Scholar 

  • Vosges M et al (2012) 17α-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reprod Toxicol 33:198–204. https://doi.org/10.1016/j.reprotox.2011.04.005

    CAS  Article  Google Scholar 

  • Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I (2012) The weight of nations: an estimation of adult human biomass. BMC Public Health 12:439. https://doi.org/10.1186/1471-2458-12-439

    Article  Google Scholar 

  • Wei X, Huang Y, Wong MH, Giesy JP, Wong CKC (2011) Assessment of risk to humans of bisphenol A in marine and freshwater fish from Pearl River Delta, China. Chemosphere 85:122–128. https://doi.org/10.1016/j.chemosphere.2011.05.038

    CAS  Article  Google Scholar 

  • Xuan X, Wen X, Li S, Zhu D, Li Y (2013) Potential use of macro-algae Gracilaria lemaneiformis in diets for the black sea bream, Acanthopagrus schlegelii, juvenile. Aquaculture 412:167–172. https://doi.org/10.1016/j.aquaculture.2013.07.022

    CAS  Article  Google Scholar 

  • Yang L, Cheng Q, Lin L, Wang X, Chen B, Luan T, Tam NFY (2016) Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: effect of tide, particle size and salinity. Environ Pollut 211:58–66. https://doi.org/10.1016/j.envpol.2015.12.034

    CAS  Article  Google Scholar 

  • Yuan S, Yu C, Chang B (2004) Biodegradation of nonylphenol in river sediment. Environ Pollut 127:425–430

    CAS  Article  Google Scholar 

  • Zhang X, Gao Y, Li Q, Li G, Guo Q, Yan C (2011) Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yundang lagoon in Xiamen, China. Arch Environ Contam Toxicol 61:93–100. https://doi.org/10.1007/s00244-010-9588-0

    CAS  Article  Google Scholar 

  • Zhang Y-Z, Song X-F, Kondoh A, Xia J, Tang C-Y (2011) Behavior, mass inventories and modeling evaluation of xenobiotic endocrine-disrupting chemicals along an urban receiving wastewater river in Henan province, China. Water Res 45:292–302. https://doi.org/10.1016/j.watres.2010.07.057

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Nguyen Nghia Hung and Mr. Le Quan Quan (Southern Institute of Water Resources Research of Vietnam) for their support on hydrological data. Our gratitude goes also to Mr. Pham Minh Quan, Mr. Ngo Anh Tuan, Ms. Pham Thi Kim Ngan, and Mr. Tran Cao Tri for their assistance during the survey.

Funding

This study was supported by Kochi University of Technology—Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunemi Watanabe.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 72 kb)

ESM 2

(DOCX 78 kb)

ESM 3

(DOCX 144 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ho, H.T.T., Watanabe, T. An integrated modelling framework and a modified method for evaluating non-carcinogenic health risks from nonylphenol-contaminated food consumption in Long An, Vietnam. Environ Sci Pollut Res 25, 29433–29450 (2018). https://doi.org/10.1007/s11356-018-2949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2949-3

Keywords

  • Fugacity-based multimedia model
  • Food web bioaccumulation model
  • Bioaccumulation factor (BAF)
  • Biomagnification factor (BMF)
  • Endocrine disruptor contamination
  • Human health risk assessment
  • Tropical estuary ecosystem