Skip to main content
Log in

Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Waste Opuntia is an abundant source of biomass to produce biogas and biofertilizer in a small and commercial scale. This crop has a high biomass yield, wide adaptation to diverse climatic zones, rapid growth, and low input requirements. This study aimed to evaluate the combined effect of adjusting C/N ratio and an alkaline pretreatment (AP) of waste Opuntia heliabravoana Scheinvar in the production of biogas and biofertilizer in anaerobic reactors. AP bioreactors produced more biogas than the control (C, without the combined effect of AP); besides, in this process, it was not necessary to use additional water due to the high content of water that is present in the tissue of this crop. On the other hand, both biofertilizers (C and AP) had enssential microbial groups that help to enhance plant nutrition as S-reducers, S-oxidizers, amylolytic, cellulolytic bacteria, anaerobic S-mineralizers, cellulolytic fungi, and P-solubilizers. Also, the AP treatment to help to increase 1.5:1 total nitrogen (TN) concentration decreased the pathogenic microorganisms in the biofertilizer compared to the C treatment. For this reason, Opuntia spp. is a good substrate for production of biogas and biofertilizer with essential nutrients for many crops in area with water scarcity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AP:

Bioreactor with adjusted C/N ratio and alkaline pretreatment

BOD5 :

Biological oxygen demand, mg L−1

C:

Control bioreactor

COD:

Chemical oxygen demand, mg L−1

EC:

Electrical conductivity, dS cm−1

HRT:

Hydraulic retention time, days

OLR:

Organic loading rate, kgVS∙m−3 day−1

T:

Temperature, °C

TN:

Total nitrogen, mg L−1

TOC:

Total carbon; mg L−1

TP:

Total phosphorus, mg L−1

TS:

Total solids, %

VM:

Volatile matter, %

VS:

Volatile solids, %

References

  • Aguilar CN, Rodríguez HN, Saucedo PS, Jasso CD (2008) Fitoquímicos sobresalientes del semidesierto mexicano: de la planta a los químicos naturales y a la biotecnología. In: (ed.) Path Desing. Saltillo, Mexico, pp 579 (in Spanish)

  • Al Seadi T, Lukehurst C (2012) Quality management of digestate from biogas plants used as fertiliser. In: (ed.) IEA bioenergy. United Kingdom, pp 4-36

  • Alburquerque JA, Fuente C, Ferrer-Costa A, Carrasco L, Cegarra J, Abad M, Bernal MP (2012) Assessment of the fertilizer potential of digestate from the farm and agroindustrial residues. Biomass Bioenergy 40:181–189

    Article  CAS  Google Scholar 

  • APHA AWWA WEF (2012) Standard methods for the examination of water and wastewater. 22nd ed

  • Beltrán-Hernández RI, Vázquez-Rodríguez GA, Juárez-Santillán LF, Martínez-Ugalde I, Coronel-Olivares C, Lucho-Constantino CA (2015) Cadmium removal from aqueous systems using Opuntia albicarpa L. Scheinvar as Biosorbent. Biomed Res Int 2015:1–6. https://doi.org/10.1155/2015/832571

    Article  CAS  Google Scholar 

  • Bernal M, Alburquerque JA, Bustamante MA, Albiach R, Bonmati A, Moral R (2014) Uso agrícola de materiales digeridos: situación actual y perspectivas de futuro III. In: (ed.) Mundi-Prensa España, pp 43

  • Bobich EG, Nobel PS (2001) Biomechanics and anatomy of cladode junctions for two Opuntia (Cactaceae) species and their hybrid. Am J Bot 88:391–400

    Article  CAS  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  Google Scholar 

  • Boontian N (2014) Conditions of the anaerobic digestion of biomass. World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering. https://waset.org/publications/9999472/conditions-of-the-anaerobic-digestion-of-biomass. Accessed 13 April 2018

  • Butlin KR, Adams ME, Thomas M (1949) The isolation and cultivation of sulphate-reducing bacteria. J Gen Microbiol 3:46–59

    CAS  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment process employed for bioconversion of lignocellulosic biomass into biofuels and value-added products. Biotechnology 3:415–431

    Google Scholar 

  • Chen Y, Clapp CE, Magen H (2004) Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Sci Plant Nutr 50:1089–1095

    Article  CAS  Google Scholar 

  • Cuervo JPL (2010) Aislamiento y caracterización de Bacillus spp como fijadores de nitrógeno y solubilizadores de fosfatos en dos muestras de biofertilizantes comerciales. Undergraduated thesis in Agricultural and Veterinary Microbiology. Bogota

  • Dauber J, Brow C, Fernando AL, Finnan J, Krasuska E, Ponitka J, Styles D, Thrän D, Van KJ, Groenigen Weig M, Zah R (2012) Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk 7:5–50

    Article  Google Scholar 

  • Do Nascimiento T, Damilano E, Gomes A, Bezerra FC, Rodrigues RF, Cordeiro D, Moraes CA, Ardaillon D, Morais MA, Menezes RSC (2016) Potential for biofuels from the biomass of prickly pear cladodes: challenges for bioethanol and biogas production in dry areas. Biomass Bioenergy 85:215–222

    Article  CAS  Google Scholar 

  • EPA (1995) SW-846 EPA Test methods for evaluating solid waste physical/chemical method. Chapter Three-Metallic analytes. Method 3051 microwave-assisted acid digestion of sediments, sludges, soils and oils. CD-ROM Revision 3, US Environmental Protection Agency, Washington, DC, USA

  • FDA (2017) Bacteriological analytical manual. FDA. Available from: https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm2006949.htm

  • Flores-Váldez CA (2002) Production and marketing of the tuna. Centro de Investigaciones Económicas, Sociales y Tecnológicas de la Agroindustria y la Agricultura Mundial. Universidad Autonóma de Chapingo. 67:87 (Spanish)

  • García J, Ballesteros MI (2005) Quality parameters evaluation for organic carbon determining in soils. Rev Colomb Quím 34:201–209 (Spanish)

    Google Scholar 

  • García V, Nobel PS (1992) Biomass and fruit production for the prickly pear cactus, Opuntia ficus-indica. J Am Soc Hortic Sci 117:558–562

    Google Scholar 

  • Ghosh K, Sen SK, Ray AK (2002) Characterization of bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquac 12:33–42

    Article  Google Scholar 

  • González ML, Calderón GJO, Cervantes OR (2014) Biodigesters in the production of effluent applied malting barley crop. Available from http://siproduce.sifupro.org.mx/seguimiento/archivero/13/2013/trimestrales/anexo_1389-5-2014-02-3.pdf (Spanish)

  • Govasmark E, Stäb J, Holen B, Hoornstra D, Nesbakk T, Salkinoja-Salonen M (2011) Chemical and microbiological hazards associated with recycling of anaerobically digested residue intended for agricultural use. Waste Manag 31:2577–2583

    Article  CAS  Google Scholar 

  • Gupta P, Samant K, Sahu A (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012:1–5. https://doi.org/10.1155/2012/578925

    Article  CAS  Google Scholar 

  • Islas-Valdez S, Lucho-Constantino CA, Beltrán-Hernández RI, Gómez-Mercado R, Vázquez-Rodríguez GA, Herrrera JM, Jiménez-González (2017) Effectiveness of rabbit manure biofertilizer in barley crop yield. Environ Sci Pollut Res doi: https://doi.org/10.1007/s11356-015-5665-2, 24, 25731, 25740

    Article  CAS  Google Scholar 

  • Jiang Y, Heaven S, Banks CJ (2012) Strategies for stable anaerobic digestion of vegetable waste. Renew Energy 44:206–214

    Article  CAS  Google Scholar 

  • Jigar E, Sulaiman H, Asfaw A, Bairu A (2011) Study on renewable biogas energy production from cladodes of Opuntia ficus-indica. J Food Agric Sci 1:44–48

    Google Scholar 

  • Lira R, Casas A, Blancas J (2016) Ethnobotany of Mexico: interactions of people and plants in Mesoamerica, Springer

  • López M, Espinosa M (2008) Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 28:2229–2234

    Article  CAS  Google Scholar 

  • Mahanta P, Saha UK, Dewan A, Kalita P (2004) The influence of temperature and total solid concentration on the gas production rate of a biogas digester. J Energy S Afr 15:112–117

    Google Scholar 

  • Mason PM, Glover K, Smith JAC, Willis KJ, Woods J, Thompson IP (2015) The potential of CAM crops as a globally significant bioenergy resource: moving from “fuel or food” to “fuel and more food”. Energy Environ Sci 8:2320–2329

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Llabrés P, Cecchi F, Pavan P (1992) Anaerobic digestion of the Barcelona central food market organic wastes: an experimental study. Bioresour Technol 39:39–48

    Article  CAS  Google Scholar 

  • Moncayo G, (2013) Biodigestors. Dimensioning and design of biodigesters and biogas plants. Aqualimpia Engineering e. K. (in Spanish)

  • Nharingo T, Moyo M (2016) Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review. J Environ Manag 166:55–72

    Article  CAS  Google Scholar 

  • Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492

    Article  Google Scholar 

  • Piątek M, Lisowski A, Kasprzycka A, Lisowska B (2016) The dynamics of an anaerobic digestion of crop substrates with an unfavourable carbon to nitrogen ratio. Bioresour Technol 216:607–612

    Article  CAS  Google Scholar 

  • Ramos-Suárez JL, Martínez A, Carrreras N (2014) Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers Manag 88:1263–1270

    Article  CAS  Google Scholar 

  • Sitorus B, Sukandar, Panjaitan SD (2013) Biogas recovery from anaerobic digestion process of mixed fruit-vegetable wastes. Energy Procedia 32:176–182

    Article  CAS  Google Scholar 

  • Sylvester-Bradley R, Asakawa N, Torraca SL, Magalhães FMM, Oliveira LA, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazon 12:15–22

    Article  Google Scholar 

  • Tan GH, Nordin MS, Kert TL, Napsiah AB, Jeffrey LSH (2009) Isolation of beneficial microbes from biofertilizer products. J Trop Agric Food Sci 37:103–109

    Google Scholar 

  • Torres-Ponce RL, Morales-Corral D, Ballina-Casarrubias ML, Nevárez-Moorillón GV (2015) Nopal: semi-desert plant with applications in pharmaceuticals, food and animal nutrition. Rev Mex Cienc Agríc 6:1129–1142 (Spanish)

    Google Scholar 

  • Verma S (2004) Anaerobic digestion of biodegradable organics in municipal solid wastes. Department of Earth and Environmental Engineering. Columbia University, New York

    Google Scholar 

  • Volpe M, Goldfarb JL, Fiori L (2018) Hydrothermal carbonization of Opuntia ficus-indica cladodes: role of process parameters on hydrochar properties. Bioresour Technol 247:310–318

    Article  CAS  Google Scholar 

  • Yang L, Lu M, Carl S, Mayer JA, Cushman JC, Tian E, Lin H (2015) Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 76:43–53

    Article  CAS  Google Scholar 

  • Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476

    Article  CAS  Google Scholar 

  • Zuo Z, Wu S, Zhang W, Dong R (2013) Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresour Technol 146:556–561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to CONACYT for granting the Ph.D. academic scholarship (610463) to Erendira Tonantzin Quintanar Orozco, and to Lucía Pérez Martínez, Delia Skarlet Pancardo Carrasco and Liliana Isabel Gamboa Magaña for technical support in this project (Academia Mexicana de la Ciencia, period 2015-2016).We are grateful to Bioceres S.A.P.I. de C.V. for the economic support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alexander Lucho-Constantino.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintanar-Orozco, E.T., Vázquez-Rodríguez, G.A., Beltrán-Hernández, R.I. et al. Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar. Environ Sci Pollut Res 25, 28403–28412 (2018). https://doi.org/10.1007/s11356-018-2845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2845-x

Keywords

Navigation