Adamo P, Dudka S, Wilson MJ, McHardy WJ (1996) Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environ Pollut 91:11–19. https://doi.org/10.1016/0269-7491(95)00035-P
CAS
Article
Google Scholar
Alex LA, Reeve JN, Orme-Johnson WH, Walsh CT (1990) Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum delta H. Biochemistry 29:7237–7244
CAS
Article
Google Scholar
APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Water Works Association, Washington D.C., USA
Ariunbaatar J, Esposito G, Yeh DH, Lens PNL (2016) Enhanced anaerobic digestion of food waste by supplementing trace elements: role of selenium (VI) and iron (II). Front Environ Sci 4:1–11. https://doi.org/10.3389/fenvs.2016.00008
Article
Google Scholar
Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135. https://doi.org/10.1016/j.biortech.2011.10.068
CAS
Article
Google Scholar
Callander IJ, Barford JP (1983) Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. I. Methodology. Biotechnol Bioeng 25:1947–1957. https://doi.org/10.1002/bit.260250805
CAS
Article
Google Scholar
Canadian Council of Ministers of the Environment (2010) Canadian soil quality guidelines for the protection of environmental and human health—polycyclic aromatic hydrocarbons. Can Environ Qual Guidel 19
Carliell-Marquet C, Smith J, Wheatley A et al (2010) Inorganic profiles of chemical phosphorus removal sludge. Proc Inst Civ Eng-Water Manag 163:65–77. https://doi.org/10.1680/wama.2010.163.2.65
Article
Google Scholar
Clark RW, Bonicamp JM (2000) Solubility and solubility products (about J. Chem. Educ. 1998, 75, 1179–1181 and J. Chem. Educ. 1998, 75, 1182–1185). J Chem Educ 77:1558. https://doi.org/10.1021/ed077p1558.2
CAS
Article
Google Scholar
Climenhaga MA, Banks CJ (2008) Anaerobic digestion of catering wastes: effect of micronutrients and retention time. Water Sci Technol 57:687–692. https://doi.org/10.2166/wst.2008.092
CAS
Article
Google Scholar
Cooper DC, Morse JW (1999) Selective extraction chemistry of toxic metal sulfides from sediments. Aquat Geochemistry 5:87–97. https://doi.org/10.1023/A:1009672022351
CAS
Article
Google Scholar
Daas PJH, Hagen WR, Keltjens JT, Vogels GD (1994) Characterization and determination of the redox properties of the 2[4Fe-4S] ferredoxin from Methanosarcina barkeri strain MS. FEBS Lett 356:342–344. https://doi.org/10.1016/0014-5793(94)01313-6
CAS
Article
Google Scholar
De Vrieze J, De Lathouwer L, Verstraete W, Boon N (2013) High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Res 47:3732–3741. https://doi.org/10.1016/j.watres.2013.04.020
CAS
Article
Google Scholar
van der Veen A, Fermoso FG, Lens PNL (2007) Bonding from analysis of metals and sulfur fractionation in methanol-grown anaerobic granular sludge. Eng Life Sci 7:480–489. https://doi.org/10.1002/elsc.200720208
CAS
Article
Google Scholar
Emerson S, Jacobs L, Tebo B (1983) The behavior of trace metals in marine anoxic waters: solubilities at the oxygen-hydrogen sulfide Interface. In: Trace metals in sea water. Springer US, Boston, MA, pp 579–608
Chapter
Google Scholar
Ermler U, Grabarse W, Shima S et al (1997) Crystal structure of methyl coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462. https://doi.org/10.1126/science.278.5342.1457
CAS
Article
Google Scholar
Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77. https://doi.org/10.1016/j.bej.2012.10.004
CAS
Article
Google Scholar
Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste-linking process to microbial communities. FEMS Microbiol Ecol 74:226–240. https://doi.org/10.1111/j.1574-6941.2010.00932.x
CAS
Article
Google Scholar
Fermoso FG, Bartacek J, Jansen S, Lens PNL (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407:3652–3667. https://doi.org/10.1016/j.scitotenv.2008.10.043
CAS
Article
Google Scholar
Ferry JG (2010) How to make a living by exhaling methane. Annu Rev Microbiol 64:453–473. https://doi.org/10.1146/annurev.micro.112408.134051
CAS
Article
Google Scholar
Funk T, Gu W, Friedrich S, Wang H, Gencic S, Grahame DA, Cramer SP (2004) Chemically distinct Ni sites in the A-cluster in subunit β of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina t hermophila: Ni L-edge absorption and X-ray magnetic circular dichroism analyses. J Am Chem Soc 126:88–95. https://doi.org/10.1021/ja0366033
CAS
Article
Google Scholar
Gartner P, Echer A, Fischer R et al (1993) Purification and properties of N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Eur J Biochem 213:537–545. https://doi.org/10.1111/j.1432-1033.1993.tb17792.x
CAS
Article
Google Scholar
Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:1–20. https://doi.org/10.3389/fmicb.2012.00061
Article
Google Scholar
Gong W, Hao B, Wei Z, Ferguson DJ, Tallant T, Krzycki JA, Chan MK (2008) Structure of the alpha2epsilon2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci U S A 105:9558–9563. https://doi.org/10.1073/pnas.0800415105
Article
Google Scholar
Gustavsson J, Shakeri Yekta S, Sundberg C, Karlsson A, Ejlertsson J, Skyllberg U, Svensson BH (2013) Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl Energy 112:473–477. https://doi.org/10.1016/j.apenergy.2013.02.009
CAS
Article
Google Scholar
Hassler CS, Slaveykova VI, Wilkinson KJ (2004) Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ Toxicol Chem 23:283–291. https://doi.org/10.1897/03-149
CAS
Article
Google Scholar
Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffiere P, Carballa M, de Wilde V, Ebertseder F, Fernandez B, Ficara E, Fotidis I, Frigon JC, de Laclos HF, Ghasimi DSM, Hack G, Hartel M, Heerenklage J, Horvath IS, Jenicek P, Koch K, Krautwald J, Lizasoain J, Liu J, Mosberger L, Nistor M, Oechsner H, Oliveira JV, Paterson M, Pauss A, Pommier S, Porqueddu I, Raposo F, Ribeiro T, Rusch Pfund F, Stromberg S, Torrijos M, van Eekert M, van Lier J, Wedwitschka H, Wierinck I (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:1–9. https://doi.org/10.2166/wst.2016.336
CAS
Article
Google Scholar
Huerta-Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13:213–233. https://doi.org/10.1016/S0883-2927(97)00060-7
CAS
Article
Google Scholar
Jacobs L, Emerson S (1982) Trace metal solubility in an anoxic fjord. Earth Planet Sci Lett 60:237–252. https://doi.org/10.1016/0012-821X(82)90006-1
CAS
Article
Google Scholar
Kaksonen AH, Riekkola-Vanhanen ML, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266. https://doi.org/10.1016/S0043-1354(02)00267-1
CAS
Article
Google Scholar
Kalis EJJ, Weng L, Temminghoff EJM, Van Riemsdijk WH (2007) Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique. Anal Chem 40(1563):955–955. https://doi.org/10.1021/ac0615403
CAS
Article
Google Scholar
Karadag D, Puhakka JA (2010) Enhancement of anaerobic hydrogen production by iron and nickel. Int J Hydrog Energy 35:8554–8560. https://doi.org/10.1016/j.ijhydene.2010.04.174
CAS
Article
Google Scholar
Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114:446–452. https://doi.org/10.1016/j.jbiosc.2012.05.010
CAS
Article
Google Scholar
Koch K, Drewes JE (2014) Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data. Appl Energy 120:11–15. https://doi.org/10.1016/j.apenergy.2014.01.050
Article
Google Scholar
Liu Y, Fang HHP (1998) Precipitates in anaerobic granules treating sulphate-bearing wastewater. Water Res 32:2627–2632. https://doi.org/10.1016/S0043-1354(98)00010-4
CAS
Article
Google Scholar
López S, Dhanoa MS, Dijkstra J, Bannink A, Kebreab E, France J (2007) Some methodological and analytical considerations regarding application of the gas production technique. Anim Feed Sci Technol 135:139–156. https://doi.org/10.1016/j.anifeedsci.2006.06.005
CAS
Article
Google Scholar
Moestedt J, Nordell E, Shakeri Yekta S, Lundgren J, Martí M, Sundberg C, Ejlertsson J, Svensson BH, Björn A (2016) Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manag 47:11–20. https://doi.org/10.1016/j.wasman.2015.03.007
CAS
Article
Google Scholar
Morse JW, Arakaki T (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57:3635–3640. https://doi.org/10.1016/0016-7037(93)90145-M
CAS
Article
Google Scholar
Morse JW, Luther GW (1999) Chemical influence on trace metalsulphide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3378
Article
Google Scholar
Nges IA, Björnsson L (2012) High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 47:62–70. https://doi.org/10.1016/j.biombioe.2012.10.002
CAS
Article
Google Scholar
Oleszkiewicz JA, Sharma VK (1990) Stimulation and inhibition of anaerobic processes by heavy metals—a review. Biol Wastes 31:45–67. https://doi.org/10.1016/0269-7483(90)90043-R
CAS
Article
Google Scholar
Orme-Johnson WH, Walsh CT, Fox JA, Livingston DJ (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization. Biochemistry 26:4219–4227. https://doi.org/10.1021/bi00388a007
Article
Google Scholar
Ortner M, Wöss D, Schumergruber A, Pröll T, Fuchs W (2015) Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion. Appl Energy 143:460–471. https://doi.org/10.1016/j.apenergy.2015.01.039
Article
Google Scholar
Pfeffer JT (1974) Temperature effects on anaerobic fermentation of domestic refuse. Biotechnol Bioeng 16:771–787
CAS
Article
Google Scholar
Pobeheim H, Munk B, Lindorfer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45:781–787. https://doi.org/10.1016/j.watres.2010.09.001
CAS
Article
Google Scholar
Qiang H, Lang D-L, Li Y-Y (2012) High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, cobalt, and nickel requirements. Bioresour Technol 103:21–27. https://doi.org/10.1016/j.biortech.2011.09.036
CAS
Article
Google Scholar
Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41:1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012
CAS
Article
Google Scholar
Rex Goates J, Gordon MB, Faux ND (1952) Calculated values for the solubility product constants of the metallic sulfides. J Am Chem Soc 74:835–836. https://doi.org/10.1021/ja01123a510
Article
Google Scholar
Rogers JE, John E., Whitman WB (1991) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology
Tampio E, Ervasti S, Paavola T, Heaven S, Banks C, Rintala J (2014) Anaerobic digestion of autoclaved and untreated food waste. Waste Manag 34:370–377. https://doi.org/10.1016/j.wasman.2013.10.024
CAS
Article
Google Scholar
Terlesky KC, Ferry JG (1988) Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J Biol Chem 263:4080–4082
CAS
Google Scholar
Tersteegen A, Hedderich R (1999) Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 264:930–943
CAS
Article
Google Scholar
Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536. https://doi.org/10.1146/annurev.biochem.030508.152103
CAS
Article
Google Scholar
Tong X, Smith LLH, McCarty PPL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255. https://doi.org/10.1016/0144-4565(90)90075-U
CAS
Article
Google Scholar
Uçkun Kiran E, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. https://doi.org/10.1016/j.fuel.2014.05.074
CAS
Article
Google Scholar
USEPA (2009) Target National Sewage Sludge Survey. Report No. EPA-822-R-08-014
Yang H, Shen J (2006) Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrog Energy 31:2137–2146. https://doi.org/10.1016/j.ijhydene.2006.02.009
CAS
Article
Google Scholar
Yekta SS, Skyllberg U, Danielsson Å, Björn A, Svensson BH (2017) Chemical speciation of sulfur and metals in biogas reactors—implications for cobalt and nickel bio-uptake processes. J Hazard Mater 324:110–116. https://doi.org/10.1016/J.JHAZMAT.2015.12.058
Article
Google Scholar
Zandvoort MH, van Hullebusch ED, Fermoso FG, Lens PNL (2006a) Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Eng Life Sci 6:293–301. https://doi.org/10.1002/elsc.200620129
CAS
Article
Google Scholar
Zandvoort MH, van Hullebusch ED, Gieteling J, Lens PNL (2006b) Granular sludge in full-scale anaerobic bioreactors: trace element content and deficiencies. Enzym Microb Technol 39:337–346. https://doi.org/10.1016/j.enzmictec.2006.03.034
CAS
Article
Google Scholar
Zhang L, Jahng D (2012) Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manag 32:1509–1515. https://doi.org/10.1016/j.wasman.2012.03.015
CAS
Article
Google Scholar
Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrog Energy 31:441–446. https://doi.org/10.1016/j.ijhydene.2005.05.006
CAS
Article
Google Scholar
Zhang L, Lee Y-WW, Jahng D (2011) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 102:5048–5059. https://doi.org/10.1016/j.biortech.2011.01.082
CAS
Article
Google Scholar
Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392. https://doi.org/10.1016/j.rser.2014.05.038
CAS
Article
Google Scholar
Zhang W, Zhang L, Li A (2015a) Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: process performance and synergistic effects. Chem Eng J 259:795–805. https://doi.org/10.1016/j.cej.2014.08.039
CAS
Article
Google Scholar
Zhang W, Zhang L, Li A (2015b) Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability. Water Res 84:266–277. https://doi.org/10.1016/j.watres.2015.07.010
CAS
Article
Google Scholar
Zhu H, Fang HHP, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32:4112–4118. https://doi.org/10.1016/j.ijhydene.2007.06.010
CAS
Article
Google Scholar