Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide

Abstract

Electrochemical oxidation was proposed as a promising technology for algal control in drinking water treatment. To be effective, the electrogenerated oxidants should have long half-lives and could continually inhibit the growth of algae. In this study, we used the electrochemical system equipped with a Ti/RuO2 anode which focus on generating long half-life chlorines and H2O2. We explored the impact of electrical field and electrogenerated oxidants on algal inhibition, and we investigated the production of electrogenerated reactive species and their contributions to the inhibition of Microcystis aeruginosa (M. aeruginosa) in simulated surface water with low Cl concentrations (< 18 mg/L). We developed a kinetic model to simulates the concentrations of chlorines and H2O2. The results showed that electrical field and electrogenerated oxidants were both important contributors to algal inhibition during electrochemical oxidation treatment. The Ti/RuO2 anode mainly generates chlorines and H2O2 from Cl and water. During the electrolysis at current density of 20 mA/cm2, when initial Cl concentrations increased from 0 to 18 mg/L (0–5.07 × 10−4 mol/L), the chlorines increased from 0 to 3.62 × 10−6 mol/L, and the H2O2 concentration decreased from 3.68 × 10−6 to 1.15 × 10−6 mol/L. Our model made decent predictions of other Cl concentrations by comparing with experiment data which validated the rationality of this modeling approach. The electrogenerated chlorine species were more effective than H2O2 at an initial Cl concentration of 18 mg/L.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acero JL, Rodriguez E, Meriluoto J (2005) Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Res 39:1628–1638

    CAS  Article  Google Scholar 

  2. Al-Hamaiedeh DH (2013) Electrochemical-active chlorine generation by circulating the electrolyte through an electrolytic cell. Environ Eng Sci 30:82–88

    CAS  Article  Google Scholar 

  3. Bader H, Sturzenegger V, Hoigne J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-,diethyl-P-phenylenedia- mine (DPD). Water Res 22:1109–1115

    CAS  Article  Google Scholar 

  4. Bergmann MEH, Rollin J (2007) Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal Today 124:198–203

    CAS  Article  Google Scholar 

  5. Burrini D, Lupi E, Klotzner C, Santine C, Lanciotti E (2000) Survey of microalgae and cyanobacteria in a drinking-water utility supplying the city of Florence, Italy. J Water Supply Res Technol 49:139–147

    Article  Google Scholar 

  6. Buxton G, Greenstock C, Helman P, Ross A (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH·/O·) in aqueous solution. J Phys Chem Ref Data 17:513–518

    CAS  Article  Google Scholar 

  7. Chen C, Yang Z, Kong FX, Zhang M, Yu Y, Shi XL (2016) Growth, physiochemical and antioxidant responses of overwintering benthic cyanobacteria to hydrogen peroxide. Environ Pollut 219:649–655

    CAS  Article  Google Scholar 

  8. de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574

    Article  CAS  Google Scholar 

  9. Drabkova M, Admiraal W, Marsalek B (2007) Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms. Environ Sci Technol 41:309–314

    CAS  Article  Google Scholar 

  10. Duan F, Li YP, Cao HB, Wang Y, Crittenden J, Zhang Y (2015) Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere 125:205–211

    CAS  Article  Google Scholar 

  11. Feng C, Sugiura N, Shimada S, Maekawa T (2003) Development of a high performance electrochemical wastewater treatment system. J Hazard Mater 103(1–2):65–78

    CAS  Article  Google Scholar 

  12. Gao SS, Du MA, Tian JY, Yang JY, Yang JX, Ma F, Nan J (2010) Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. J Hazard Mater 182:827–834

    CAS  Article  Google Scholar 

  13. Ghernaout D, Ghernaout B (2010) From chemical disinfection to electrodisinfection: the obligatory itinerary? Desalin Water Treat 16:156–175

    CAS  Article  Google Scholar 

  14. Huang HM, Xiao X, Lin F, Grossart HP, Nie ZY, Sun LJ, Xu C, Shi JY (2016) Continuous-release beads of natural allele chemicals for the long-term control of cyanobacterial growth: preparation, release dynamics and inhibitory effects. Water Res 95:113–123

    CAS  Article  Google Scholar 

  15. Huo XC, Chang DW, Tseng JH, Burch M, Lin TF (2015) Exposure of microcystis aeruginosa to hydrogen peroxide under light: kinetic modeling of cell rupture and simultaneous microcystin degradation. Environ Sci Technol 49:5502–5510

    CAS  Article  Google Scholar 

  16. Jeong J, Kim C, Yoon J (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res 43:895–901

    CAS  Article  Google Scholar 

  17. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    CAS  Article  Google Scholar 

  18. Li Y, Li C, Zheng Y, Wu G, Wuyun T, Xu H, He X, Jiang G (2011) Cadmium pollution enhanced ozone damage to winter wheat: biochemical and physiological evidences. J Environ Sci 23:255–265

    CAS  Article  Google Scholar 

  19. Li L, Shao C, Lin TF, Shen JY, Yu SL, Shang R, Yin DQ, Zhang KJ, Gao NY (2014) Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa. Environ Sci Technol 48:2885–2892

    CAS  Article  Google Scholar 

  20. Liang WY, Qu JH, Chen LB, Liu HJ, Lei PJ (2005) Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes. Environ Sci Technol 39:4633–4639

    CAS  Article  Google Scholar 

  21. Lin L, Feng C, Li QY, Wu M, Zhao LY (2015) Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa. Environ Sci Pollut Res 22:14932–14939

    CAS  Article  Google Scholar 

  22. Liu C, Xie X, Zhao W, Liu N, Maraccine AP, Sassoubre ML, Boehm BA, Cui Y (2013) Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano Lett 13(9):4288–4293

    CAS  Article  Google Scholar 

  23. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    CAS  Article  Google Scholar 

  24. Mascia M, Vacca A, Palmas S (2013) Electrochemical treatment as a pre-oxidative step for algae removal using Chlorella vulgaris as a model organism and BDD anodes. Chem Eng J 219:512–519

    CAS  Article  Google Scholar 

  25. Mascia M, Monasterio S, Vacca A, Palmas S (2016) Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes. J Hazard Mater 319:111–120

    CAS  Article  Google Scholar 

  26. Monitoring and analyzing methods for water and waste water (the fourth edition). Beijing: China Environmental Science Press, 2002, pp 670-671

  27. Nanayakkara KGN, Zheng YM, Alam AKMK, Zou S, Chen JP (2011) Electrochemical disinfection for ballast water management: technology development and risk assessment. Mar Pollut Bull 63:119–123

    CAS  Article  Google Scholar 

  28. Niu JF, Li Y, Shang EX, Xu ZS, Liu JZ (2016) Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146:526–538

    CAS  Article  Google Scholar 

  29. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    CAS  Article  Google Scholar 

  30. Paerl HW, Xu H, McCarthy MJ, Zhu GW, Qin BQ, Li YP, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983

    CAS  Article  Google Scholar 

  31. Pliquett U, Joshi RP, Sridhara V, Schoenbach KH (2007) High electrical field effects on cell membranes. Bioelectrochemistry 70:275–282

    CAS  Article  Google Scholar 

  32. Qi J, Lan HC, Liu RP, Miao SY, Liu HJ, Qu JH (2016) Prechlorination of algae-laden water: the effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation. Water Res 102(1):221–228

    CAS  Article  Google Scholar 

  33. Qin BQ, Zhu GW, Gao G, Zhang YL, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45:105–112

    Article  Google Scholar 

  34. Saetae P, Bunthawin S, Ritchie R (2014) Environmental persistence of chlorine from prawn farm discharge monitored by measuring the light reactions of photosynthesis of phytoplankton. Aquac Int 22(2):321–338

    CAS  Article  Google Scholar 

  35. Sarkka H, Vepsalainen M, Pulliainen M, Sillanpaa M (2008) Electrochemical inactivation of paper mill bacteria with mixed metal oxide electrode. J Hazard Mater 156:208–213

    Article  CAS  Google Scholar 

  36. Shen QH, Zhu JW, Cheng LH, Zhang JH, Zhang Z, Xu XH (2011) Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation. Desalination 271:236–240

    CAS  Article  Google Scholar 

  37. Shi K, Zhang Y, Xu H, Zhu G, Qin B, Huang C, Liu X, Zhou Y, Heng L (2015) Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environ Sci Technol 45:6448–6456

    Article  CAS  Google Scholar 

  38. Vacca A, Mascia M, Palmas S, Da Pozzo A (2011) Electrochemical treatment of water containing chlorides under non-ideal flow conditions with BDD anodes. J Appl Electrochem 41:1087–1097

    CAS  Article  Google Scholar 

  39. Xie RZ, Meng XY, Sun PZ, Niu JF, Jiang WJ, Bottomley L, Li D, Chen YS, Crittenden J (2017) Electrochemical oxidation of ofloxacin on a TiO2-based SnO2-Sb/polytetrafluoroethylene resin—PbO2 electrode: reaction kinetics and mass transfer impact. Appl Catal B 203:515–525

    CAS  Article  Google Scholar 

  40. Xu Q, Zhao TS (2013) Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries. Phys Chem Chem Phys 15:10841–10848

    CAS  Article  Google Scholar 

  41. Xu Y, Yang J, Ou M, Wang Y, Jia J (2007) Study of Microcystis aeruginosa inhibition by electrochemical method. Biochem Eng J 36:215–220

    CAS  Article  Google Scholar 

  42. Zhang GS, Zhang YC, Nadagouda M, Han CS, O’Shea K, El-Sheikh SM, Ismail AA, Dionysiou DD (2014) Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Appl Catal B Environ 144:614–621

    CAS  Article  Google Scholar 

  43. Zuo, Z., Katsumura, Y., Ueda, K., Ishigure, K., 1997. Laser photolysis study on reactions of sulfate radical and nitrate radical with chlorate ion in aqueous solutions Formation and reduction potential of ClO3 radical. J. Chem. Soc., Faraday Trans. 93, 533-536

    CAS  Article  Google Scholar 

  44. Zhou SQ, Shao YS, Gao NY, Deng Y, Qiao JL, Ou H, Deng J (2013) Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. Sci Total Environ 463–464:111–119

    Article  CAS  Google Scholar 

  45. Zhou SQ, Shao YS, Gao NY, Deng Y, Li L, Deng J, Tan CQ (2014) Characterization of algal organic matters of Microcystis aeruginosa: biodegradability, DBP formation and membrane fouling potential. Water Res 52:199–207

    CAS  Article  Google Scholar 

  46. Zhu W, Zhou X, Chen H, Gao L, Xiao M, Li M (2016) High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: evidence from field investigations and laboratory experiments. Water Res 101:167–175

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grants 51309019 and 51379016), Young Elite Scientist Sponsorship Program by CAST (Grant 2015QNRC001), Technology Demonstration Project of the Ministry of Water Resources of China (SF-201602), and State-level Public Welfare Scientific Research Institutes Basic Scientific Research Business Project of China (CKSF2017062/SH). This work was also supported by the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology (Georgia Tech Hightower No. 1365802). The views and ideas expressed herein are solely of the authors and do not represent the ideas of the funding agencies in any form.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Li Lin or Jin Chen.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 2535 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Meng, X., Li, Q. et al. Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide. Environ Sci Pollut Res 25, 27924–27934 (2018). https://doi.org/10.1007/s11356-018-2830-4

Download citation

Keywords

  • Electrochemical oxidation
  • Algae
  • Chlorines
  • Hydrogen peroxide
  • Algal inhibition
  • Kinetic model