Skip to main content

Vermicompost addition influences symbiotic fungi communities associated with leek cultivated in metal-rich soils

Abstract

In the context of urban agriculture, where soils are frequently contaminated with metal(loid)s (TM), we studied the influence of vermicompost amendments on symbiotic fungal communities associated with plants grown in two metal-rich soils. Leek (Allium porrum L.) plants were grown with or without vermicompost in two metal-rich soils characterized by either geogenic or anthropogenic TM sources, to assess the influence of pollutant origin on soil-plant transfer. Fungal communities associated with the leek roots were identified by high throughput Illumina MiSeq and TM contents were measured using mass spectrometry. Vermicompost addition led to a dramatic change in the fungal community with a loss of diversity in the two tested soils. This effect could partially explain the changes in metal transfer at the soil-AMF-plant interface. Our results suggest being careful while using composts when growing edibles in contaminated soils. More generally, this study highlights the need for further research in the field of fungal communities to refine practical recommendations to gardeners.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • AFNOR (1992) Qualité des sols - Détermination du cuivre, du fer, du manganèse et du zinc - Extraction par l’acétate d’ammonium en présence d’EDTA. Association Française de Normalisation

  • AFNOR (2005) ISO 10390:2005. Qualité du sol - Détermination du pH. Association Française de Normalisation

  • Agnan Y (2013) Bioaccumulation et bioindication par les lichens de la pollution atmosphérique actuelle et passée en métaux et en azote en France: sources, mécanismes et facteurs d’influence. Université de Toulouse, France, 307p

  • Amir H, Jourand P, Cavaloc Y, Ducousso M (2014) Role of mycorrhizal fungi in the alleviation of heavy metal toxicity in plants. Soil Biology 41:251–258

  • Beavington F (1975) Heavy metal contamination of vegetables and soil in domestic gardens around a smelting complex. Environ Pollut 1970(9):211–217

    Article  Google Scholar 

  • Beck J (2012) Integrating compost, cover crops, mycorrhizal fungi, and vermicompost as sustainable management practices for strawberry production in the southeastern US. Faculty of North Carolina State University. 129p

  • Beesley L, Moreno-Jiménez E, Clemente R, Lepp N, Dickinson N (2010) Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environ Pollut 158:155–160

    Article  CAS  Google Scholar 

  • Bekiaris G, Bruun S, Peltre C, Houot S, Jensen LS (2015) FTIR–PAS: a powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste Manag 39:45–56

    Article  CAS  Google Scholar 

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol

  • Bordez L, Jourand P, Ducousso M, Carriconde F, Cavaloc Y, Santini S, Claverie JM, Wantiez L, Leveau A, Amir H (2016) Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits. Mol Ecol 25:2258–2272

    Article  CAS  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems, In: Begon M, Fitter AH, Macfadyen (eds) Advances in ecological research. London, pp. 171–313

  • Cecchi M (2008) Devenir du plomb dans le système sol-plante: Cas d’un sol contaminé par une usine de recyclage du plomb et de deux plantes potagères (Fève et Tomate). Université de Toulouse, France, 226p

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144:287–298

    Article  CAS  Google Scholar 

  • Chao A, Chiu C-H, Jost L (2010) Phylogenetic diversity measures based on Hill numbers. Philos Trans R Soc B Biol Sci 365:3599–3609. https://doi.org/10.1098/rstb.2010.027

    Article  Google Scholar 

  • Chen C, Zhang J, Lu M, Qin C, Chen Y, Yang L, Huang Q, Wang J, Shen Z, Shen Q (2016) Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol Fertil Soils 52:455–467

    Article  CAS  Google Scholar 

  • Choi J (2006) Geochemical modeling of cadmium sorption to soil as a function of soil properties. Chemosphere 63:1824–1834

    Article  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A (2016) The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fertil Soils 52:15–29

    Article  CAS  Google Scholar 

  • Diemar GA, Filella M, Leverett P, Williams PA (2009) Dispersion of antimony from oxidizing ore deposits. Pure Appl Chem 81:1547–1553

    Article  CAS  Google Scholar 

  • Dumat C, Pierart A, Shahid M et al (2018) Collective conceptualization and management of risk for arsenic pollution in urban community gardens. Rev Agric Food Environ Stud (3):1–21. https://doi.org/10.1007/s41130-018-0073-x

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci Rev 57:125–176

    Article  CAS  Google Scholar 

  • Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93:1430–1435

    Article  CAS  Google Scholar 

  • FranceAgriMer (2013) Les filières des fruits et légumes, données 2012. France AgriMer. 92p

  • Fujiwara F, Rebagliati RJ, Marrero J, Gómez D, Smichowski P (2011) Sb as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchem J 97:62–67

    Article  CAS  Google Scholar 

  • Galt RE, Gray LC, Hurley P (2014) Subversive and interstitial food spaces: transforming selves, societies, and society–environment relations through urban agriculture and foraging. Local Environ 19:133–146

    Article  Google Scholar 

  • Garg N, Bhandari P (2013) Cd toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst - Int J Deal Asp Plant Biol 148:609–621

    Google Scholar 

  • Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249:217–228

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  • Haghiri F (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J Environ Qual 3:180–183

    Article  CAS  Google Scholar 

  • Hassan SED, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483

    Article  CAS  Google Scholar 

  • Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnology 30:780–787

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hu X, Sun Y, Ding Z, Zhang Y, Wu J, Lian H, Wang T (2014) Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions. Environ Pollut 187:42–48

    Article  CAS  Google Scholar 

  • Huang YC, Chen Z, Liu WJ (2012) Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V). Plant Soil 352(1–2):41–49. https://doi.org/10.1007/s11104-011-0973-x

  • Ilgen AG, Trainor TP (2012) Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced Nontronite NAu-1. Environ Sci Technol 46:843–851

    Article  CAS  Google Scholar 

  • Jaffré T, Veillon JM, Pintaud C (1995) Comparaison de la diversité floristique des forêts denses humides sur roches ultramafiques et sur substrats différents en Nouvelle-Calédonie. ORSTOM 3:163–170

    Google Scholar 

  • Janoušková M, Pavlíková D, Macek T, Vosátka M (2005) Arbuscular mycorrhiza decreases cd phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil 272:29–40

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders I, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  Google Scholar 

  • Jarrah M, Ghasemi-Fasaei R, Karimian N, Ronaghi A, Zarei M, Mayel S (2014) Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation by sunflower in a calcareous soil. Bioremediation J 18:71–79

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Krachler M, Zheng J, Koerner R, Zdanowicz C, Fisher D, Shotyk W (2005) Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada. J Environ Monit 7:1169–1176

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Lepart J, Escarre J (1983) La succession végétale, mécanismes et modèles: analyse bibliographique. Bull Décologie 14:133–178

    Google Scholar 

  • Leveque T (2014) Biomonitoring environnemental et sanitaire des sols pollués par les éléments traces métalliques. Université de Toulouse, France, 213p

  • Li A-R, Guan K-Y, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot 112:1089–1098

    Article  CAS  Google Scholar 

  • Lin Q, Chen YX, He YF, Tian GM (2004) Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agric Ecosyst Environ 104:605–613

    Article  CAS  Google Scholar 

  • Liu L, Gong Z, Zhang Y, Li P (2014) Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology 23(10):1979–1986. https://doi.org/10.1007/s10646-014-1331-6

  • Liu W, Zhou Q, An J, Sun Y, Liu R (2010) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173(1–3):737-43. https://doi.org/10.1016/j.jhazmat.2009.08.147

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  Google Scholar 

  • Mani D, Mourya VK, Balak S, Patel NK, Pal N (2014) Effect of organic matter on the uptake of cadmium by spinach (Spinacea oleracea L.). Asian J Adv Basic Sci 3:144–150

    Google Scholar 

  • Masset S, Monteil-Rivera F, Dupont L, Dumonceau J, Aplincourt M (2000) Influence of humic acid on sorption of co (II), Sr (II), and se (IV) on goethite. Agronomie 20:525–535

    Article  Google Scholar 

  • Medina A, Vassilev N, Azcón R (2010) The interactive effect of an AM fungus and an organic amendment with regard to improving inoculum potential and the growth and nutrition of Trifolium repens in Cd-contaminated soils. Appl Soil Ecol 44:181–189

    Article  Google Scholar 

  • Meers E, Samson R, Tack FMG, Ruttens A, Vandegehuchte M, Vangronsveld J, Verloo MG (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396

    Article  CAS  Google Scholar 

  • Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C (2016) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments 16:1214–1224

    Article  CAS  Google Scholar 

  • Montiel-Rozas M d M, López-García Á, Kjøller R, Madejón E, Rosendahl S (2016) Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements. Mycorrhiza 26:575–585

    Article  CAS  Google Scholar 

  • Murphy DV, Cookson WR, Braimbridge M, Marschner P, Jones DL, Stockdale EA, Abbott LK (2011) Relationships between soil organic matter and the soil microbial biomass (size, functional diversity, and community structure) in crop and pasture systems in a semi-arid environment. Soil Res 49:582–594

    Article  CAS  Google Scholar 

  • NEN 5704 (1996) Bodem. Monstervoorbehandeling van grond. Extractie met een calciumchloride-oplossing (0,01 mol/l). Nederlands Normalisatie-Instituut, 3p

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  CAS  Google Scholar 

  • Okkenhaug G, Zhu Y-G, Luo L, Lei M, Li X, Mulder J (2011) Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ Pollut 159:2427–2434

    Article  CAS  Google Scholar 

  • Pérez-Sirvent C, Martínez-Sánchez MJ, Martínez-López S, Bech J, Bolan N (2012) Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. J Geochem Explor 123:128–135

    Article  CAS  Google Scholar 

  • Peris M, Micó C, Recatalá L, Sánchez R, Sánchez J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ 378:42–48

    Article  CAS  Google Scholar 

  • Peyret-Guzzon M, Stockinger H, Bouffaud M-L, Farcy P, Wipf D, Redecker D (2016) Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. Mycorrhiza 26:33–46

    Article  CAS  Google Scholar 

  • Pierart A (2016) Rôle des champignons mycorhiziens à arbuscules et des bioamendments dans le transfert et la bioaccessibilité humaine de Cd, Pb et Sb vers les végétaux cultivés en milieu urbain. Université de Toulouse, France, 237p

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  Google Scholar 

  • Pierart A, Dumat C, Maes AQ, Sejalon-Delmas N (2017) Influence of arbuscular mycorrhizal fungi on Sb phyto-uptake and compartmentation in vegetables currently cultivated in urban gardens. Chemosphere 191:272–279. https://doi.org/10.1016/j.chemosphere.2017.10.058

  • Pierart A, Dumat C, Maes AQ, Roux C, Sejalon-Delmas N (2018) Opportunities and risks of biofertilization for leek production in urban areas: influence on both fungal diversity and human bioaccessibility of inorganic pollutants. Sci Total Environ 624:1140–1151

    Article  CAS  Google Scholar 

  • Piotrowski JS, Rillig MC (2008) Succession of arbuscular mycorrhizal fungi: patterns, causes, and considerations for organic agriculture. In: Advances in agronomy. Elsevier, pp 111–130

  • Prokop Z, Cupr P, Zlevorova-Zlamalikova V, Komarek J, Dusek L, Holoubek I (2003) Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environ Res 91:119–126

    Article  CAS  Google Scholar 

  • Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149:217–223

    Article  CAS  Google Scholar 

  • Robbins N, Zhang Z-F, Sun J, Ketterer ME, Lalumandier JA, Shulze RA (2010) Childhood lead exposure and uptake in teeth in the Cleveland area during the era of leaded gasoline. Sci Total Environ 408:4118–4127

    Article  CAS  Google Scholar 

  • Roper AJ, Williams PA, Filella M (2012) Secondary antimony minerals: phases that control the dispersion of antimony in the supergene zone. Chem Erde - Geochem 72:9–14

    Article  CAS  Google Scholar 

  • Roth E, Mancier V, Fabre B (2012) Adsorption of cadmium on different granulometric soil fractions: influence of organic matter and temperature. Geoderma 189–190:133–143

    Article  CAS  Google Scholar 

  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. II: influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ Pollut, Passive Air Sampling of Persistent Organic Pollutants 144:533–539

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera C, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SSN, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246

    Article  Google Scholar 

  • Schroeder HA, Balassa JJ (1963) Cadmium: uptake by vegetables from superphosphate in soil. Science 140:819–820

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12. https://doi.org/10.1016/j.jhazmat.2012.01.060

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Springer New York, New York

    Book  Google Scholar 

  • Sharma A, Sharma H (2013) Role of vesicular arbuscular mycorrhiza in the mycoremediation of heavy toxic metals from soil. International Journal of Life Sciences Biotechnology and Pharma Research 2:2418–2431

    Google Scholar 

  • Smichowski P (2008) Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta 75:2–14

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal Symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  CAS  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43

    Article  Google Scholar 

  • Tighe M, Lockwood P, Wilson S (2005) Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J Environ Monit 7:1177–1185

    Article  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • USEPA (2006) Drinking water regulations and health advisories (no. 822-NaN-06–013). Washington

  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042

    Article  CAS  Google Scholar 

  • Vanek SJ, Lehmann J (2015) Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant Soil 395:105–123

    Article  CAS  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MG (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  Google Scholar 

  • Viti C, Tatti E, Decorosi F, Lista E, Rea E, Tullio M, Sparvoli E, Giovannetti L (2010) Compost effect on plant growth-promoting Rhizobacteria and mycorrhizal fungi population in maize cultivations. Compost Sci Util 18:273–281

    Article  Google Scholar 

  • Wang G, Su M-Y, Chen Y-H, Lin F-F, Luo D, Gao S-F (2006) Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ Pollut 144:127–135

    Article  CAS  Google Scholar 

  • Wei Y, Su Q, Sun Z, Shen Y, Li J, Zhu X, Hou H, Chen Z, Wu FC (2016) The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Appl Soil Ecol 107:244–250

    Article  Google Scholar 

  • Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM (2009) Rhizosphere communities of genetically modified Zeaxanthin – accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microb 75(12):3859–3865. https://doi.org/10.1128/AEM.00414-09

  • Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84:145

    Article  Google Scholar 

  • Wiseman CLS, Zereini F, Püttmann W (2013) Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci Total Environ 442:86–95

    Article  CAS  Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16

    Article  CAS  Google Scholar 

  • Xi J, He M, Lin C (2010) Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environ Earth Sci 60:715–722

    Article  CAS  Google Scholar 

  • Xiong T-T, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Sobanska S, Foucault Y, Dumat C (2014a) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 36(5):897–909. https://doi.org/10.1007/s10653-014-9607-6

  • Xiong T-T, Leveque T, Shahid M, Foucault Y, Dumat C (2014b) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmosphere pollution by process ultrafine particles. J Environ Qual 43(5):1593–600. https://doi.org/10.2134/jeq2013.11.0469

  • Xu W, Wang H, Liu R, Zhao X, Qu J (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn binary oxide. J Colloid Interface Sci 363:320–326

    Article  CAS  Google Scholar 

  • Zhang X, Chen B, Ohtomo R (2015) Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Sci Plant Nutr 61:359–368

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

  • Zorrig W, El Khouni A (2013) Lettuce (Lactuca sativa): a species with a high capacity for cadmium (Cd) accumulation and growth stimulation in the presence of low Cd concentrations. J Hortic Sci Biotechnol 88:783–789

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Agency under reference ANR-12-0011-VBDU. The authors thank Leigh Gebbie for her thorough English revision of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sejalon-Delmas.

Additional information

Highlights

• Vermicompost addition decreased the diversity of AMF associated with plants

• Soil history can influence the evolution of fungal communities after a new stress

• Changes in AMF communities may influence metal(loid) phyto-uptake

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pierart, A., Maes, A.Q., Dumat, C. et al. Vermicompost addition influences symbiotic fungi communities associated with leek cultivated in metal-rich soils. Environ Sci Pollut Res 26, 20040–20051 (2019). https://doi.org/10.1007/s11356-018-2803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2803-7

Keywords

  • Vermicompost
  • Arbuscular mycorrhizal fungi
  • Fungal community
  • Metal(loid)s
  • Soil-plant transfer
  • Urban agriculture