Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production

Abstract

Optimizing the mono-cultivation and mixed cultivation of Chlamydomonas reinhardtii, Chlorella vulgaris, and an Ettlia sp. was evaluated for treating nitrate-contaminated groundwater and biomass production. Ettlia sp. showed the highest nutrient assimilation and growth rate among the three microalgae during bioremediation. Light-dark cycle was the effective condition for nutrient removal and COD mitigation by microalgae. Mixed microalgae with a larger presence of the Ettlia sp. exhibited the highest biomass productivity, nitrate-nitrogen, and phosphate-phosphorus removal rates of 0.21 g/L/d, 16.6, and 3.06 mg/L/d, respectively. An N:P mass ratio of 5 was necessary to increase the mixed-microalgal performance. The settling efficiency of the mixed microalgae increased up to 0.55 when using pH modulation during 30 min. Therefore, applying an Ettlia sp.-dominant consortium was the optimum strategy for the bioremediation of nitrate-contaminated groundwater in 3 days.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.

References

  1. Agusti S, Kalff J (1989) The influence of growth conditions on the size dependence of maximal algal density and biomass. Limnol Oceanogr 34:1104–l108. https://doi.org/10.4319/lo.1989.34.6.1104

  2. Ahn CY, Chung AS, Oh HM (2002) Diel rhythm of algal phosphate uptake rates in P-limited cyclostats and simulation of its effect on growth and competition. J Phycol 36:695–704. https://doi.org/10.1046/j.1529-8817.2002.01232.x

    Article  Google Scholar 

  3. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association/American Water Work Association/Water Environment Federation, Washington, DC

    Google Scholar 

  4. Babaei A, Mehrnia MR, Shayegan J, Sarrafzadeh MH (2016) Comparison of different trophiccultivations in microalgal membrane bioreactor containing N-riched wastewater for simultaneous nutrient removal and biomass production. Process Biochem 51:1568–1575. https://doi.org/10.1016/j.procbio.2016.06.011

    Article  CAS  Google Scholar 

  5. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge Univ Press, Cambridge

    Google Scholar 

  6. Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106. https://doi.org/10.1016/j.watres.2015.03.018

    Article  CAS  Google Scholar 

  7. Brown N, Shilton A (2014) Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Biotechnol 13:321–328. https://doi.org/10.1007/s11157-014-9337-3.

    Article  CAS  Google Scholar 

  8. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516. https://doi.org/10.1016/j.biortech.2012.01.125

    Article  CAS  Google Scholar 

  9. Cho DH, Choi JW, Kang Z, Kim BH, Oh HM, Kim HS, Ramanan R (2017) Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci Rep 7:1979. https://doi.org/10.1038/s41598-017-02139-8

    Article  CAS  Google Scholar 

  10. Fried S, Mackie B, Nothwehr E (2003) Nitrate and phosphate levels positively affect the growth of algae species found in Perry pond. Tillers 4:21–24

    Google Scholar 

  11. Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507. https://doi.org/10.1007/s10811-008-9392-7

    Article  CAS  Google Scholar 

  12. Guisasola A, Pijuan M, Baeza JA, Carrera J, Casas C, Lafuente J (2003) Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate. Biotechnol Bioeng 85:722–733. https://doi.org/10.1002/bit.10868

    Article  CAS  Google Scholar 

  13. Hein M, Pedersen MF, Sand-Jensen K (1995) Size dependent nitrogen uptake in micro- and macroalgae. Mar Ecol Prog Ser 118:247–253. https://doi.org/10.3354/meps118247

    Article  Google Scholar 

  14. Hellebust JA, Ahmad I (1989) Regulation of nitrogen assimilation in green microalgae. Biol Oceanogr 6:241–255. https://doi.org/10.1080/01965581.1988.10749529

    Article  Google Scholar 

  15. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1991) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–421. https://doi.org/10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  16. Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66:133–139. https://doi.org/10.1128/AEM.66.1.133-139.2000

    Article  CAS  Google Scholar 

  17. Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16. https://doi.org/10.1016/j.biotechadv.2012.04.007

    Article  CAS  Google Scholar 

  18. Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ Sci 2:1275089. https://doi.org/10.1080/23311843.2016.1275089

    Article  CAS  Google Scholar 

  19. Johnson KR, Admassu W (2013) Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation. J Chem Technol Biotechnol 88:992–998. https://doi.org/10.1002/jctb.3943

    Article  CAS  Google Scholar 

  20. Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J (2016) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol 28:1509–1520. https://doi.org/10.1007/s10811-015-0726-y

    Article  CAS  Google Scholar 

  21. Kandimalla P, Desi S, Vurimindi H (2015) Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ Sci Pollut Res 23:9345–9354. https://doi.org/10.1007/s11356-015-5264-2

    Article  CAS  Google Scholar 

  22. Kim CJ, Jung YH, Ko SR, Kim HI, Park YH, Oh HM (2007) Raceway cultivation of Spirulina platensis using underground water. J Microbiol Biotechnol 17:853–857

    CAS  Google Scholar 

  23. Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnol Bioprocess Eng 6:194–199. https://doi.org/10.1007/BF02932550

    Article  CAS  Google Scholar 

  24. Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY (2015) Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res 68:680–691. https://doi.org/10.1016/j.watres.2014.10.029

    Article  CAS  Google Scholar 

  25. Manheim D, Nelson Y (2013) Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Prog Sustain Energy 32:946–954. https://doi.org/10.1002/ep.11861

    Article  CAS  Google Scholar 

  26. Martínez ME, Sánchez S, Jiménez JM, Yousfi FE, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272. https://doi.org/10.1016/S0960-8524(99)00121-2

    Article  Google Scholar 

  27. Mueller B, den Haan J, Visser MP, Vermeij MJA, van Duyl FC (2016) Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Sci Rep. https://doi.org/10.1038/srep23248

  28. Patel A, Barrington S, Lefsrud M (2012) Microalgae for phosphorus removal and biomass production: a six species screen for dual-purpose organisms. Bioenergy 4:485–495. https://doi.org/10.1111/j.1757-1707.2012.01159.x

    CAS  Article  Google Scholar 

  29. Pérez L, Salgueiro JL, Maceiras R, Cancela A, Sanchez A (2017) An effective method for harvesting of marine microalgae: pH induced flocculation. Biomass Bioenergy 97:20–26. https://doi.org/10.1016/j.biombioe.2016.12.010

    Article  CAS  Google Scholar 

  30. Petrovic A, Simonic M (2015) Effect of Chlorella sorokiniana on the biological denitrification of drinking water. Environ Sci Pollut Res 22:5171–5183. https://doi.org/10.1007/s11356-014-3745-3

    Article  CAS  Google Scholar 

  31. Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962. https://doi.org/10.1021/es703118s

    Article  CAS  Google Scholar 

  32. Raven JA, Beardall J (2016) Dark respiration and organic carbon loss. In: The Physiology of Microalgae. Borowitzka MA, Beardall J, Raven JA (eds) Springer International Publishing, pp 129–136.

  33. Rezvani F, Sarrafzadeh MH, Ebrahimi S, Oh HM (2017a) Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9185-0

  34. Rezvani F, Sarrafzadeh MH, Seo SH, Oh HM (2017b) Phosphorus optimization for simultaneous nitrate-contaminated groundwater treatment and algae biomass production using Ettlia sp. Bioresour Technol 244:785–792. https://doi.org/10.1016/j.biortech.2017.08.053

    Article  CAS  Google Scholar 

  35. Rhee G (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 23:10–25. https://doi.org/10.4319/lo.1978.23.1.0010

    Article  CAS  Google Scholar 

  36. Salim S, Shi Z, Vermue MH, Wijffels RH (2013) Effect of growth phase on harvesting characteristics, autoflocculation and lipid content of Ettlia texensis for microalgal biodiesel production. Bioresour Technol 138:214–221. https://doi.org/10.1016/j.biortech.2013.03.173

    Article  CAS  Google Scholar 

  37. Salim S, Kosterink NR, Tchetkoua Wacka ND, Vermuë MH, Wijffels RH (2014) Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J Biotechnol 174:34–38. https://doi.org/10.1016/j.jbiotec.2014.01.026

    Article  CAS  Google Scholar 

  38. Sarrafzadeh MH, Schorr-Galindo S, La HJ, Oh HM (2014) Aeration effects on metabolic events during sporulation of bacillus thuringiensis. J Microbiol 52:597–603. https://doi.org/10.1007/s12275-014-3547-9

    Article  CAS  Google Scholar 

  39. Sarrafzadeh MH, La HJ, Seo SH, Asgharnejad H, Oh HM (2015) Evaluation of various techniques for microalgal biomass quantification. J Biotechnol 216:90–97. https://doi.org/10.1016/j.jbiotec.2015.10.010

    Article  CAS  Google Scholar 

  40. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis, 2th edn. Fisheries Research Board of Canada, Ottawa, pp 108–110

    Google Scholar 

  41. Su Y, Mennerich A, Urban B (2012) Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresour Technol 124:157–162. https://doi.org/10.1016/j.biortech.2012.08.037

    Article  CAS  Google Scholar 

  42. Tarayre C, Nguyen HT, Brognaux A, Delepierre A, De Clercq L, Charlier R, Michels E, Meers E, Delvigne F (2016) Characterisation of phosphate accumulating organisms and techniques for polyphosphate detection: a review. Sensors (Basel) 16:797. https://doi.org/10.3390/s16060797

    Article  Google Scholar 

  43. Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting of microalgae – an overview. Bioresour Technol 242:227–235. https://doi.org/10.1016/j.biortech.2017.02.097

    Article  CAS  Google Scholar 

  44. USEPA Standard (2002) National primary drinking water standard. EPA 816-F-02-013

  45. Whitton R, Le Mevel A, Pidou M, Ometto F, Villa R, Jefferson B (2016) Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res 91:371–378. https://doi.org/10.1016/j.watres.2015.12.054

    Article  CAS  Google Scholar 

  46. Wongsanit J, Teartisup P, Kerdsueb P, Tharnpoophasiam P, Worakhunpiset S (2015) Contamination of nitrate in groundwater and its potential human health: a case study of lower Mae Klong river basin, Thailand. Environ Sci Pollut Res 22:11504–11512. https://doi.org/10.1007/s11356-015-4347-4

    Article  CAS  Google Scholar 

  47. Yoo C, La HJ, Kim SC, Oh HM (2015) Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation. Biotechnol Bioeng 112:288–296. https://doi.org/10.1002/bit.25362

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the University of Tehran under grant number 8104956/1/03, KRIBB Research Initiative Program, and Advanced Biomass R&D Center (ABC) of the Global Frontier Program funded by the Korean Ministry of Science and ICT (2010-0029723).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Hossein Sarrafzadeh.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 460 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezvani, F., Sarrafzadeh, MH., Seo, SH. et al. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production. Environ Sci Pollut Res 25, 27471–27482 (2018). https://doi.org/10.1007/s11356-018-2777-5

Download citation

Keywords

  • Microalgal size
  • Nitrate-contaminated groundwater
  • Light-dark cycle
  • Biomass production
  • Mono-cultivation
  • Mixed cultivation