Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 25, pp 25468–25475 | Cite as

Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils

  • Ning Cui
  • Haoyu Xu
  • Shijie Yao
  • Yiwen He
  • Hongchao Zhang
  • Yunlong YuEmail author
Research Article

Abstract

Enantioselectivity in environmental behavior and toxic effect of chiral pesticides has been received much attention. In this study, enantioselective bioactivity towards target organism Botrytis cinerea, acute toxicity and bioaccumulation in Eisenia fetida, and degradation in five kinds of soil under laboratory conditions regarding triazole fungicide tebuconazole were investigated. The results showed that fungicidal activity to Botrytis cinerea of R-(−)-tebuconazole was 44 times higher than S-(+)-tebuconazole with an order of R-(−)-tebuconazole > rac-tebuconazole > S-(+)-tebuconazole. No significant difference was found in acute toxicity of rac-, R-, and S-tebuconazole to E. fetida with 48-h EC50 of 10.78, 10.48, and 10.84 μg/cm2, respectively. Dissipation of tebuconazole in the five tested soils varied upon soil characteristics with half-life ranging from 32.2 to 216.6 days. Enantioselective and rapid dissipation of tebuconazole were observed in soils Hainan and Huajiachi, compared to the other soils. Enantioselective accumulation of tebuconazole in E. fetida was found with a preferential of S-(+)-tebuconazole although no significant difference in acute toxicity to E. fetida between rac-tebuconazole and enantiomers. The results indicated that S-(+)-tebuconazole with less fungicidal activity may be more likely to be accumulated in earthworm E. fetida. This research is helpful to better evaluate the environmental and ecological risk of tebuconazole on enantiomeric level.

Keywords

Enantioselective Tebuconazole Bioaccumulation Toxicity Dissipation 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2016YFD0200201) and the National Natural Science Foundation of China (nos. 21477112 and 41271489).

Supplementary material

11356_2018_2587_MOESM1_ESM.doc (434 kb)
ESM 1 (DOC 434 kb)

References

  1. Artigas J, Majerholc J, Foulquier A, Margoum C, Volat B, Neyra M, Pesce S (2012) Effects of the fungicide tebuconazole on microbial capacities for litter breakdown in streams. Aquat Toxicol 122:197–205CrossRefGoogle Scholar
  2. Diao JL, Xu P, Wang P, Lu YL, Lu DH, Zhou ZQ (2010) Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop: enantiomerization and enantioselective degradation in soil. Environ Sci Technol 44:2042–2047CrossRefGoogle Scholar
  3. Diao JL, Xu P, Liu DH, Lu YL, Zhou ZQ (2011) Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida. J Hazard Mater 192:1072–1078CrossRefGoogle Scholar
  4. Dong FS, Li J, Chankvetadze B, Cheng YP, Xu J, Liu XG, Li YB, Chen X, Bertucci C, Tedesco D, Zanasi R, Zheng YQ (2013) Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environ Sci Technol 47:3386–3394CrossRefGoogle Scholar
  5. Gámiz B, López-Cabeza R, Facenda G, Velarde P, Hermosín MC, Cox L, Celis R (2016) Effect of synthetic clay and biochar addition on dissipation and enantioselectivity of tebuconazole and metalaxyl in an agricultural soil: laboratory and field experiments. Agric Ecosyst Environ 230:32–41CrossRefGoogle Scholar
  6. Hu ML, Jiang M, Wang P, Mei SR, Lin YF, Hu XZ, Shi Y, Lu B, Dai K (2007) Selective solid-phase extraction of tebuconazole in biological and environmental samples using molecularly imprinted polymers. Anal Bioanal Chem 387:1007–1016CrossRefGoogle Scholar
  7. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food webspecific biomagnification of persistent organic pollutants. Science 317:236–239CrossRefGoogle Scholar
  8. Konwick BJ, Garrison AW, Black MC, Avants JK, Fisk AT (2006) Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout. Environ Sci Technol 40:2930–2936CrossRefGoogle Scholar
  9. Li YB, Dong FS, Liu XG, Xu J, Li J, Kong ZQ, Chen X, Zheng YQ (2012) Enantioselective determination of triazole fungicide tebuconazole in vegetables, fruits, soil and water by chiral liquid chromatography/tandem mass spectrometry. J Sep Sci 35:206–215CrossRefGoogle Scholar
  10. Li YB, Dong FS, Liu XG, Xu J, Han YT, Zheng YQ (2015) Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils. Chemosphere 122:145–153CrossRefGoogle Scholar
  11. Liu N, Dong FS, Xu J, Liu XG, Zheng YQ (2016) Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio). Ecotox Environ Saf 126:78–84CrossRefGoogle Scholar
  12. Liu TT, Diao JL, Di SS, Zhou Z (2014) Stereoselective bioaccumulation and metabolite formation of triadimefon in Tubifex tubifex. Environ Sci Technol 48:6687–6693CrossRefGoogle Scholar
  13. MuñozLeoz B, RuizRomera E, Antigüedad I, Garbisu C (2011) Tebuconazole application decreases soil microbial biomass and activity. Soil Biol Biochem 43:2176–2183CrossRefGoogle Scholar
  14. OECD Guidelines for the testing of chemicals, Section 3. Test no. 317: bioaccumulation in terrestrial oligochaetesGoogle Scholar
  15. Qi SZ, Chen XF, Liu Y, Jiang JZ, Wang CJ (2015) Comparative toxicity of rac- and S-tebuconazole to Daphnia magna. J Environ Sci Health B 50:456–462CrossRefGoogle Scholar
  16. Shen ZG, Zhu WT, Liu DH, Xu XY, Zhang P, Zhou ZQ (2012) Stereoselective degradation of tebuconazole in rat liver microsomes. Chirality 24:67–71CrossRefGoogle Scholar
  17. Stehmann C, De Waard MA (1995) Relationship between chemical structure and biological activity of triazole fungicides against Botrytis cinerea. Pest Manag Sci 44:183–195CrossRefGoogle Scholar
  18. Strickland TC, Potter TL, Joo H (2004) Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incubation. Pest Manag Sci 60:703–709CrossRefGoogle Scholar
  19. Wang HL, Chen JH, Guo BY, Li JZ (2014) Enantioseletive bioaccumulation and metabolization of diniconazole in earthworms (Eisenia fetida) in an artificial soil. Ecotox Environ Saf 99:98–104CrossRefGoogle Scholar
  20. Wang XQ, Jia GF, Qiu J, Diao JL, Zhu WT, Lv CG, Zhou ZQ (2007) Stereoselective degradation of fungicide benalaxyl in soils and cucumber plants. Chirality 19:300–306CrossRefGoogle Scholar
  21. Wang XQ, Wang XS, Zhang H, Wu CX, Wang XY, Xu H, Wang XF, Li Z (2012a) Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils. Chirality 24:104–111CrossRefGoogle Scholar
  22. Wang YH, Cang T, Zhao XP, Yu RX, Chen LP, Wu CX, Wang Q (2012b) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotox Environ Saf 79:122–128CrossRefGoogle Scholar
  23. Xu P, Liu DH, Diao JL, Lu DH, Zhou ZQ (2009) Enantioselective acute toxicity and bioaccumulation of benalaxyl in earthworm (Eisenia fedtia). J Agr Food Chem 57:8545–8549CrossRefGoogle Scholar
  24. Xu P, Diao JL, Liu DH, Zhou ZQ (2011) Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 83:1074–1079CrossRefGoogle Scholar
  25. Ye J, Wu J, Liu WP (2009) Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. TRAC-Trend Anal Chem 28:1148–1163CrossRefGoogle Scholar
  26. Ye J, Zhao MR, Niu LL, Liu WP (2015) Enantioselective environmental toxicology of chiral pesticides. Chem Res Toxicol 28:325–338CrossRefGoogle Scholar
  27. Yu L, Chen ML, Liu YH, Gui WJ, Zhu GN (2013) Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquat Toxicol 138:35–42CrossRefGoogle Scholar
  28. Zhang H, Qian MR, Wang XQ, Wang XY, Xu H, Qi PP, Wang Q, Wang MH (2012) Analysis of tebuconazole and tetraconazole enantiomers by chiral HPLC-MS/MS and application to measure enantioselective degradation in strawberries. Food Anal Method 5:1342–1348CrossRefGoogle Scholar
  29. Zhang Q, Hua XD, Shi HY, Liu JS, Tian MM, Wang MH (2015a) Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol. J Hazard Mater 284:65–72CrossRefGoogle Scholar
  30. Zhang Q, Zhou L, Yang Y, Hua X, Shi H, Wang M (2015b) Study on the stereoselective degradation of three triazole fungicides in sediment. Ecotox Environ Saf 117:1–6CrossRefGoogle Scholar
  31. Zhang Z, Zhang Q, Gao B, Guo G, Li L, Shi H, Wang M (2017) Simultaneous enantioselective determination of the chiral fungicide prothioconazole and its major chiral metabolite prothioconazole-desthio in food and environmental samples by ultraperformance liquid chromatography-tandem mass spectrometry. J Agr Food Chem 65:8241–8247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ning Cui
    • 1
  • Haoyu Xu
    • 1
  • Shijie Yao
    • 1
  • Yiwen He
    • 1
  • Hongchao Zhang
    • 1
  • Yunlong Yu
    • 1
    Email author
  1. 1.Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina

Personalised recommendations