Direct and indirect photolysis of the antibiotic enoxacin: kinetics of oxidation by reactive photo-induced species and simulations

Abstract

The purpose of this study was to investigate the aqueous phase photochemical behavior of enoxacin (ENO), an antibiotic selected as a model pollutant of emerging concern. The second-order reaction rate constants of ENO with hydroxyl radicals (HO) and singlet oxygen (1O2) were determined at pH 3, 7, and 9. Also, the rate constants of the electron transfer reaction between ENO and triplet states of chromophoric dissolved organic matter (3CDOM*) are reported for the first time, based on anthraquinone-2-sulfonate (AQ2S) as CDOM proxy. The sunlight-driven direct and indirect ENO degradation in the presence of dissolved organic matter (DOM) is also discussed. The results show that direct photolysis, which occurs more rapidly at higher pH, along with the reactions with HO and 3AQ2S*, is the key pathway involved in ENO degradation. The ENO zwitterions, prevailing at pH 7, show kENO, HO, kENO,1O2, and kENO,3AQ2S* of (14.0 ± 0.8) × 1010, (3.9 ± 0.2) × 106, and (61.5 ± 0.7) × 108 L mol−1 s−1, respectively, whose differences at pH 3, 7, and 9 are due to ENO pH-dependent speciation and reactivity. These k values, along with the experimental ENO photolysis quantum yield, were used in mathematical simulations for predicting ENO persistence in sunlit natural waters. According to the simulations, dissolved organic matter and water depth are expected to have the highest impacts on ENO half-life, varying from a few hours to days in summertime, depending on the concentrations of relevant waterborne species (organic matter, NO3, NO2, HCO3).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. al Housari F, Vione D, Chiron S, Barbati S (2010) Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochem Photobiol Sci 9:78–86

    Article  Google Scholar 

  2. Albini A, Monti S (2003) Photophysics and photochemistry of fluoroquinolones. Chem Soc Rev 32:238–250

    Article  CAS  Google Scholar 

  3. Arques A, Bianco Prevot A (2015) Soluble bio-based substances isolated from urban wastes: environmental applications. Springer International Publishing, ISBN 978-3-31914744-4 (eBook), https://doi.org/10.1007/978-3-319-14744-4

  4. Barbieri Y, Massad WA, Diaz DJ, Sanz J, Amat-Guerri F, Garcia NA (2008) Photodegradation of bisphenol a and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts. Chemosphere 73:564–571

    Article  CAS  Google Scholar 

  5. Batista APS, Teixeira A, Cooper WJ, Cottrell BA (2016) Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine. Water Res 93:20–29

    Article  CAS  Google Scholar 

  6. Bedini A, De Laurentiis E, Sur B, Maurino V, Minero C, Brigante M, Mailhot G, Vione D (2012) Phototransformation of anthraquinone-2-sulphonate in aqueous solution. Photochem Photobiol Sci 11:1445–1453

    Article  CAS  Google Scholar 

  7. Bodrato M, Vione D (2014) APEX (aqueous photochemistry of environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters. Environ Sci-Proc Imp 16:732–740

    CAS  Google Scholar 

  8. Boreen AL, Arnold WA, McNeill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environ Sci Technol 38:3933–3940

    Article  CAS  Google Scholar 

  9. Boreen AL, Arnold WA, McNeill K (2005) Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct. Environ Sci Technol 39:3630–3638

    Article  CAS  Google Scholar 

  10. Carlos L, Martire DO, Gonzalez MC, Gomis J, Bernabeu A, Amat AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46:4732–4740

    Article  CAS  Google Scholar 

  11. De Laurentiis E, Prasse C, Ternes TA, Minella M, Maurino V, Minero C, Sarakha M, Brigante M, Vione D (2014) Assessing the photochemical transformation pathways of acetaminophen relevant to surface waters: transformation kinetics, intermediates, and modelling. Water Res 53:235–248

    Article  CAS  Google Scholar 

  12. Edhlund BL, Arnold WA, McNeill K (2006) Aquatic photochemistry of nitrofuran antibiotics. Environ Sci Technol 40:5422–5427

    Article  CAS  Google Scholar 

  13. Elovitz MS, von Gunten U (1999) Hydroxyl radical ozone ratios during ozonation processes. I-the R-ct concept. Ozone-Sci Eng 21:239–260

    Article  CAS  Google Scholar 

  14. Escalada JP, Arce VB, Porcal GV, Biasutti MA, Criado S, Garcia NA, Martire DO (2014) The effect of dichlorophen binding to silica nanoparticles on its photosensitized degradation in water. Water Res 50:229–236

    Article  CAS  Google Scholar 

  15. Fabbri D, Minella M, Maurino V, Minero C, Vione D (2015) A model assessment of the importance of direct photolysis in the photo-fate of cephalosporins in surface waters: possible formation of toxic intermediates. Chemosphere 134:452–458

    Article  CAS  Google Scholar 

  16. Fick J, Soderstrom H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    Article  CAS  Google Scholar 

  17. Gangwang, Liu GG, Liu HJ, Zhang N, Wang YL (2012) Photodegradation of salicylic acid in aquatic environment: effect of different forms of nitrogen. Sci Total Environ 435:573–577

    Article  CAS  Google Scholar 

  18. Gao SQ, Jin HY, You JY, Ding Y, Zhang N, Wang Y, Ren RB, Zhang R, Zhang HQ (2011) Ionic liquid-based homogeneous liquid-liquid microextraction for the determination of antibiotics in milk by high-performance liquid chromatography. J Chromatogr A 1218:7254–7263

    Article  CAS  Google Scholar 

  19. Ge LK, Na GS, Zhang SY, Li K, Zhang P, Ren HL, Yao ZW (2015) New insights into the aquatic photochemistry of fluoroquinolone antibiotics: direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes. Sci Total Environ 527:12–17

    Article  CAS  Google Scholar 

  20. Guerard JJ, Miller PL, Trouts TD, Chin YP (2009) The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquat Sci 71:160–169

    Article  CAS  Google Scholar 

  21. Hessler DP, Gorenflo V, Frimmel FH (1993) Degradation of aqueous atrazine and Metazachlor solutions by UV and UV/H2O2 - influence of pH and herbicide concentration. Acta Hydrochirn Hydrobiol 21:209–214

    Article  CAS  Google Scholar 

  22. Ji YF, Zhou L, Zhang Y, Ferronato C, Brigante M, Mailhot G, Yang X, Chovelon JM (2013) Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices. Water Res 47:5865–5875

    Article  CAS  Google Scholar 

  23. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  24. Li K, Zhang P, Ge LK, Ren HL, Yu CY, Chen XY, Zhao YF (2014) Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics. Chemosphere 111:278–282

    Article  CAS  Google Scholar 

  25. Liu YM, Shi YM, Liu ZL (2010) Determination of enoxacin and ofloxacin by capillary electrophoresis with electrochemiluminescence detection in biofluids and drugs and its application to pharmacokinetics. Biomed Chromatogr 24:941–947

    Article  CAS  Google Scholar 

  26. Lorenzo F, Navaratnam S, Edge R, Allen NS (2009) Primary Photoprocesses in a Fluoroquinolone antibiotic Sarafloxacin. Photochem Photobiol 85:886–894

    Article  CAS  Google Scholar 

  27. Maddigapu PR, Minella M, Vione D, Maurino V, Minero C (2011) Modeling Phototransformation reactions in surface water bodies: 2,4-Dichloro-6-Nitrophenol as a case study. Environ Sci Technol 45:209–214

    Article  CAS  Google Scholar 

  28. Marchetti G, Minella M, Maurino V, Minero C, Vione D (2013) Photochemical transformation of atrazine and formation of photointermediates under conditions relevant to sunlit surface waters: laboratory measures and modelling. Water Res 47:6211–6222

    Article  CAS  Google Scholar 

  29. Montoneri E, Boffa V, Savarino P, Perrone D, Ghezzo M, Montoneri C, Mendichi R (2011) Acid soluble bio-organic substances isolated from urban bio-waste. Chemical composition and properties of products. Waste Manag 31:10–17

    Article  CAS  Google Scholar 

  30. Mostafa S, Rosario-Ortiz FL (2013) Singlet oxygen formation from wastewater organic matter. Environ Sci Technol 47:8179–8186

    Article  CAS  Google Scholar 

  31. Parsons S (2004) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, London

    Google Scholar 

  32. Passananti M, Temussi F, Iesce MR, Previtera L, Mailhot G, Vione D, Brigante M (2014) Photoenhanced transformation of nicotine in aquatic environments: involvement of naturally occurring radical sources. Water Res 55:106–114

    Article  CAS  Google Scholar 

  33. Perisa M, Babic S, Skoric I, Fromel T, Knepper TP (2013) Photodegradation of sulfonamides and their N (4)-acetylated metabolites in water by simulated sunlight irradiation: kinetics and identification of photoproducts. Environ Sci Pollut R 20:8934–8946

    Article  CAS  Google Scholar 

  34. Porras J, Bedoya C, Silva-Agredo J, Santamaria A, Fernandez JJ, Torres-Palma RA (2016) Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Res 94:1–9

    Article  CAS  Google Scholar 

  35. Schwarzenbach RP (2003) Environmental organic chemistry. Second edition. Wiley & Sons, Inc., Hoboken

    Google Scholar 

  36. Silva MP, Mostafa S, McKay G, Rosario-Ortiz FL, Teixeira A (2015) Photochemical fate of Amicarbazone in aqueous media: laboratory measurement and simulations. Environ Eng Sci 32:730–740

    Article  CAS  Google Scholar 

  37. Sortino S, De Guidi G, Giuffrida S, Monti S, Velardita A (1998) pH effects on the spectroscopic and photochemical behavior of Enoxacin: a steady-state and time-resolved study. Photochem Photobiol 67:167–173

    Article  CAS  Google Scholar 

  38. Stefan MI, Bolton JR (2002) UV direct photolysis of N-Nitrosodimethylamine (NDMA): kinetic and product study. Helv Chim Acta 85:1416–1426

    Article  CAS  Google Scholar 

  39. Tong CL, Xiang GH (2007) Sensitive determination of enoxacin by its enhancement effect on the fluorescence of terbium(III)-sodium dodecylbenzene sulfonate and its luminescence mechanism. J Lumin 126:575–580

    Article  CAS  Google Scholar 

  40. Vione D, Maddigapu PR, De Laurentiis E, Minella M, Pazzi M, Maurino V, Minero C, Kouras S, Richard C (2011) Modelling the photochemical fate of ibuprofen in surface waters. Water Res 45:6725–6736

    Article  CAS  Google Scholar 

  41. Xie Q, Chen J, Zhao H, Qiao X, Cai X, Li X (2013) Different photolysis kinetics and photooxidation reactivities of neutral and anionic hydroxylated polybrominated diphenyl ethers. Chemosphere 90:188–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to FAPESP (São Paulo Research Foundation, grant #2016/03695-8) and to Prof. Neyde Y. M. Iha (Laboratory of Photochemistry and Energy Conversion of the Institute of Chemistry, University of São Paulo, Brazil).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Arlen Mabel Lastre-Acosta or Marcela Prado Silva Parizi.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOCX 48 kb)

ESM 2

(DOCX 47 kb)

ESM 3

(DOCX 46 kb)

ESM 4

(DOCX 51 kb)

ESM 5

(DOCX 48 kb)

ESM 6

(DOCX 49 kb)

ESM 7

(DOCX 43 kb)

ESM 8

(DOCX 48 kb)

ESM 9

(DOCX 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lastre-Acosta, A.M., Barberato, B., Parizi, M.P.S. et al. Direct and indirect photolysis of the antibiotic enoxacin: kinetics of oxidation by reactive photo-induced species and simulations. Environ Sci Pollut Res 26, 4337–4347 (2019). https://doi.org/10.1007/s11356-018-2555-4

Download citation

Keywords

  • Enoxacin
  • Environmental photochemical fate
  • Reactive photo-induced species
  • Dissolved organic matter
  • Mathematical modeling
  • Direct and indirect photodegradation
  • Antibiotics