Skip to main content

Advertisement

Log in

Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoremediation is a cost-effective and eco-friendly technique for the removal of heavy metal-contaminated soils and water. The less availability and mobility of heavy metals in medium decreased the efficiency of this technique. The mobility and availability of these metals in the medium can be enhanced by the addition of organic chelators. The present study was conducted to investigate the possibility of glutamic acid (GA) in improving silver (Ag) phytoextraction by sunflower (Helianthus annuus L.). Different concentrations of Ag and GA were supplied in solution form in different combinations after defined intervals. Results depicted that increasing concentration of Ag significantly reduced the plant biomass, photosynthetic pigments, and antioxidant enzyme activities (like catalase, peroxidase, ascorbate, peroxidase, superoxide dismutase). Furthermore, Ag stress increased the Ag concentration and the production of reactive oxygen species (ROS) in sunflower plants. The addition of GA alleviated the Ag-induced toxicity in plants and enhanced Ag concentration and accumulation in sunflower. The addition of GA enhanced Ag accumulation in sunflower roots by 70, 79, 58, and 66% at 0-, 100-, 250-, and 500-μM Ag treatments, respectively, as compared to control plants. In conclusion, the results showed that Ag significantly reduced the physiological and biochemical attributes in term of reduced growth of sunflower and the addition of GA alleviated the Ag induced toxicity and enhanced Ag uptake. The results suggested that sunflower can be used as hyper-accumulator plant for the removal of Ag under GA. Further studies are required to understand the role of GA at gene and microscopic level in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro methods. Enzymology 105:121–126

    Article  CAS  Google Scholar 

  • Apalangya V, Rangari V, Tiimob B, Jeelani S, Samuel T (2014) Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl Surf Sci 295:108–114

    Article  CAS  Google Scholar 

  • Aquilina N, Blundell R (2016) RETRACTED: biochemical and physiological effect of silver bioaccumulation. OJ Pathology 6:57–71

    CAS  Google Scholar 

  • Ashrafi A, Zahedi M, Soleimani M (2015) Effect of co-planted purslane (Portulaca Oleracea L.) on Cd accumulation by sunflower in different levels of Cd contamination and salinity: a pot study. Int J Phytorem 17:853–860

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  Google Scholar 

  • Atta MI, Bokhari TZ, Malik SA, Wahid A, Saeed S, Gulshan AB (2013) Assessing some emerging effects of hexavalent chromium on leaf physiological performance in sunflower (Helianthus annuus L.). Int J Sci Eng Res 4:945–949

    Google Scholar 

  • Ayatollahi, Mousavi SA, Salari S, Hadizadeh S (2016) Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes, and Microsporum gypseum. Iran J Biotechnol 13:38–42. https://doi.org/10.15171/ijb.1302

    Article  Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    Article  CAS  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  Google Scholar 

  • Barros-Galvao T, Oliveira DFA, Macedo CEC, Voigt EL (2017) Modulation of reserve mobilization by sucrose, glutamine, and abscisic acid during seedling establishment in sunflower. J Plant Growth Regul 36:11–21

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buric P, Jaksic Z, Stagner L, Sikiric MD, Jurasin D, Cascio C, Calzolai L, Lyons DM (2015) Effects of silver nanoparticles on Mediterranean Sea urchin embryonal development is species specific and depends on moment of first exposure. Mar Environ Res 111:50–59

    Article  CAS  Google Scholar 

  • Cekic FO, Ekinci S, Inal MS, Unal D (2017) Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk J Biol 41:700–707

    Article  Google Scholar 

  • Delauney AJ, Hu CAA, Kishor PBK, Verma DPS (1993) Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678

    CAS  Google Scholar 

  • Dhiman SS, Zhao X, Li J, Kim D, Kalia VC, Kim IW (2017) Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomassin enzymatic saccharification. PLoS One 12:e0175845. https://doi.org/10.1371/journal.pone.0175845

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase andcatalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dimpka CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Indus Biotechnol 8:344–357

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Doumett S, Fibbi D, Azzarello E, Mancuso S, Mugnai S, Petruzzelli G, Bubba M (2010) Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. Int J Phytorem 13:1–17

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Safe 106:164–172. https://doi.org/10.1016/j.ecoenv.2014.03.007

    Article  CAS  Google Scholar 

  • Evanggelou, MW, Papazoglou, EG, Robinson, BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. Phytoremediation. Springer International Publishing, pp. 115–132

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L. Int J Environ Sci Tech 12:3981–3992

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M (2016) Citric acid assisted phytoremediation of copper by Brassica napus L. Arsenic Research and Global Sustainability Proceedings of the Sixth International Congress on Arsenic in the Environment (As 2016), June 19–23, 2016, Stockholm, Sweden. https://doi.org/10.1201/b20466-277

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Safe 145:90–102

    Article  CAS  Google Scholar 

  • Farkas J, Christian P, Urrea JAG, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aqua Toxicol 96:44–52

    Article  CAS  Google Scholar 

  • Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR (2017) Silver nanoparticles uptake by salt marsh plants—implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119:176–183

    Article  CAS  Google Scholar 

  • Firdhouse MJ, Lalitha P (2015) Biosynthesis of silver nanoparticles and its application. J Nanotechnol 18:829526

    Google Scholar 

  • Foldbjerg R, Autrup H (2013) Mechanisms of silver nanoparticle toxicity. Arch Basic Appl Med 1:5–15

    Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  Google Scholar 

  • Hanks NA, Caruso JA, Zhang P (2015) Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag (I) contaminated waters. J Environ Manag 164:41–45

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Jia Y, Zou D, Wang J, Sha H, Liu H, Inayat MA, Zhao H (2017) Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on Rice (Oryza sativa L.) under cold stress during the early vegetative stage. J Plant Growth Regul 36:240–253

    Article  CAS  Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    Article  CAS  Google Scholar 

  • Kannan P, Sampath S., John SA (2010) Direct growth of gold nanorods on gold and indium tin oxide surfaces: spectral, electrochemical, and electrocatalytic studies. J Physical Chem C 114:21114–21122

  • Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci 234:132–141

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotech 87:932–937

    Article  CAS  Google Scholar 

  • Kumari R, Singh JS, Singh DP (2017) Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiol Biochem 110:158–166

    Article  CAS  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  Google Scholar 

  • Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicol 11:699–709

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll sand carotenoids: pigments of photosynthetic bio membranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    Article  CAS  Google Scholar 

  • Ma Y, Metch JW, Vejerano EP, Miller IJ, Leon EC, Marr IC, Vikesland PJ, Pruden A (2015) Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res 68:87–97

    Article  CAS  Google Scholar 

  • Mcshan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    Article  CAS  Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Untersuchungenzur synchronisierbaketieinzel-nerpigmentmangel-mutation von chlorella. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nam DH, Lee BC, Eom IC, Kim P, Yeo MK (2014) Uptake and bioaccumulation of titanium-and silver-nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10:9–17

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007) Chemical mutagenesis a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytoremediation 9:149–165

    Article  CAS  Google Scholar 

  • Padmapriya S, Murugan N, Ragavendran C, Thangabalu R, Natarajan D (2015) Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soil, Salem District, Tamilnadu. Int J Phytoremediation 18:288–294. https://doi.org/10.1080/15226514.2015.1085832

    Article  CAS  Google Scholar 

  • Prabu HJ, Johnson I (2015) Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Modern Sci 1:237–246

    Article  Google Scholar 

  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125

    Article  CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Zhengwei F (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rizvi H, Rinklebe J, Tsang DC, Meers E, Ok YS, Ishaque W (2016) Phytomanagement of heavy metals in contaminated soils using sunflower: a review. Crit Rev Environ Sci Technol 46:1498–1528

    Article  CAS  Google Scholar 

  • Saed-Moucheshi A, Shekoofa A, Pessarakli M (2014) Reactive oxygen species (ROS) generation and detoxifying in plants. J Plant Nutr 37:1573–1585

    Article  CAS  Google Scholar 

  • Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22:4122–4143

    Article  Google Scholar 

  • Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24:17669–17678

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  CAS  Google Scholar 

  • Sharma PR, Varma AJ (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohyd Polym 114:339–343

    Article  CAS  Google Scholar 

  • Sökmen M, Alomar SY, Albay C, Serdar G (2017) Microwave assisted production of silver nanoparticles using green tea extracts. J Alloys Compd 725:190–198

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  Google Scholar 

  • Tomacheski D, Pittol M, Simoes DN, Ribeiro VF, Santana RMC (2017) Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Global J Environ Sci Manage 3:341–350

    CAS  Google Scholar 

  • Vinkovic T, Novak O, Strnad M, Goessler W, Jurasin DD, Paradikovic N, Vrcek IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18

    Article  CAS  Google Scholar 

  • Zalewska M, Nogalska A (2014) Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil. Chil J Agr Res 74:485–489

    Article  Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    Article  CAS  Google Scholar 

  • Zhang X, Yang CW, Yu HQ, Sheng GP (2016) Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Res 106:242–248

    Article  CAS  Google Scholar 

  • Ziarati P, Zolfaghari M, Azadi B (2014) The effect of tea residue in promoting phytoremediation of Lavandula Angustifoli Mill. Int J Plant Anim Environ Sci 4:479–486

    Google Scholar 

Download references

Funding

The authors are highly thankful to the University of Gujrat, Gujrat, Pakistan and the Higher Education Commission of Pakistan for financial and technical support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujahid Farid.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 19.7 kb)

ESM 2

(DOCX 19.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, M., Ali, S., Zubair, M. et al. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response. Environ Sci Pollut Res 25, 25390–25400 (2018). https://doi.org/10.1007/s11356-018-2508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2508-y

Keywords

Navigation