Skip to main content
Log in

Organophosphorus poisoning in animals and enzymatic antidotes

  • Innovations in environmental sciences related to chemical, biological, radiological and nuclear risks
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

11 April 2024 Editor's Note: Readers are alerted that the concerns have been raised with this article. Editorial action will be taken as appropriate once this matter is resolved and all parties have been given an opportunity to respond in full.

Abstract

Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attractive as they allow efficient external decontamination without toxicity or environmental impact and may be of interest for treatment. Approaches using bioscavengers for prophylaxis, treatment, and external decontamination are emphasized and their potential is discussed in the light of toxicological observations from various animal models. The relevance of animal models, regarding their cholinergic system and the abundance of naturally protecting enzymes, is also discussed for better extrapolation of results to human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 11 April 2024

    Editor's Note: Readers are alerted that the concerns have been raised with this article. Editorial action will be taken as appropriate once this matter is resolved and all parties have been given an opportunity to respond in full.

References

Download references

Funding

L.Po. is a PhD student funded by the Direction Générale de l’Armement (DGA). This work was supported by “Investissements d’avenir” program (Méditerranée Infection 10-IAHU-03) of the French Agence Nationale de la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Daudé or Eric Chabrière.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poirier, L., Jacquet, P., Plener, L. et al. Organophosphorus poisoning in animals and enzymatic antidotes. Environ Sci Pollut Res 28, 25081–25106 (2021). https://doi.org/10.1007/s11356-018-2465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2465-5

Keywords

Navigation