Skip to main content

Humic substances in Fluvisols of the Lower Vistula floodplain, North Poland

Abstract

The present study describes properties of humic substances of the Fluvisols (the Lower Vistula, Poland). Fluvisols under agricultural management (arable soil and grassland) were sampled from the surface horizon 50, 200, 600, and 900 m from the Vistula River. The content of carbon in the fractions of humic acids (CHAs), fulvic acids (CFAs), and humins (CHUMIN) as well as the content of dissolved organic carbon (DOC) were assayed. The organic matter of the soils that were sampled 200 m from the river demonstrated a lowest share of the humic acids (HAs) and fulvic acids (FAs). The percentage share of the hydrophilic fractions (HIL) in the HAs and, as a result the value of the HIL/ΣHOB ratio, increased with the distance from the riverbed. The HAs of the soils located further from the riverbed had a higher degree of humification compared to the HAs of the soils that were sampled 50 and 200 m away. Based on the research results, it was determined that the properties of HAs can be used to evaluate the effect of flood events, their location, and scope on the transformation of the organic matter in fluvial sediments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anger DA, Bissonette N, Legere A, Samson N (1993) Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can J Soil Sci 73:39–50

    Article  Google Scholar 

  • Bätz N, Verrecchia EP, Lane SN (2015) Organic matter processing and soil evolution in a braided river system. Catena 126:86–97. https://doi.org/10.1016/j.catena.2014.10.013

    Article  CAS  Google Scholar 

  • Bengtsson G, Törneman N (2004) Dissolved organic carbon dynamics in the peat-streamwater interface. Biogeochemistry 70:93–116. https://doi.org/10.1023/B:BIOG.0000049338.81809.7c

    Article  CAS  Google Scholar 

  • Cabezas A, Comín FA (2010) Carbon and nitrogen accretion in the topsoil of the Middle Ebro River floodplains (NE Spain): implications for their ecological restoration. Ecol Eng 36:640–652. https://doi.org/10.1016/j.ecoleng.2008.07.021

    Article  Google Scholar 

  • Cerli C, Celi L, Kaiser K, Guggenberger G, Johansson M-B, Cignetti A, Zanini E (2008) Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Org Geochem 39(9):1269–1280. https://doi.org/10.1016/j.orggeochem.2008.06.001

    Article  CAS  Google Scholar 

  • Chen Y, Senesi N, Schnitzer M (1978) Chemical and physical characteristics of humic and fulvic acids extracted from soils of the Mediterranean region. Geoderma 20(2):87–104

    Article  CAS  Google Scholar 

  • Conte P, Piccolo A (1998) High pressure size exclusion chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performance. Chemosphere 38:517–528. https://doi.org/10.1016/S0045-6535(98)00198-2

    Article  Google Scholar 

  • Corenblit D, Steiger J, Gurnell AM, Tabacchi E, Roques L (2009) Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surf Proc Land 34:1790–1810. https://doi.org/10.1002/esp.1876

    Article  Google Scholar 

  • Corenblit D, Steiger J, González E, Gurnell AM, Charrier G, Darrozes J, Dousseau J, Julien F, Lambs L, Larrue S, Roussel E, Vautier F, Voldoire O (2014) The biogeomorphological life cycle of poplars during the fluvial biogeomorphological succession: a special focus on Populus nigra L. Earth Surf Proc Land 39:546–567. https://doi.org/10.1002/esp.3515

    Article  Google Scholar 

  • D’Orazio V, Senesi N (2009) Spectroscopic properties of humic acids isolated from rhizosphere and bulk soil compartments and fractionated by size-exclusion chromatography. Soil Biol Biochem 41:1775–1781. https://doi.org/10.1016/j.soilbio.2008.02.001

    Article  CAS  Google Scholar 

  • Davies-Vollum KS, Smith ND (2008) Factors affecting the accumulation of organic rich deposits in a modern avulsive floodplain: examples from the Cumberland Marshes, Saskatchewan, Canada. J Sediment Res 78:683–692. https://doi.org/10.2110/jsr.2008.077

    Article  Google Scholar 

  • Debska B, Gonet I (2007) Share of hydrophilic and hydrophobic fractions in humic acids formed as a result of post-harvest residue decompositon. Pol J Soil Sci 40(1):57–65

    CAS  Google Scholar 

  • Dębska B, Drąg M, Banach-Szott M (2007) Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil. Soil Water Res 2(2):45–53

    Article  Google Scholar 

  • Dębska B, Długosz J, Piotrowska-Długosz A, Banach-Szott M (2016) The impact of bio-fertilizer on the soil organic matter status and carbon sequestration—results from a field-scale study. J Soils Sediments 16(10):2335–2343. https://doi.org/10.1007/s11368-016-1430-5

    Article  CAS  Google Scholar 

  • Doering M, Uehlinger U, Ackermann T, Woodtli M, Tockner K (2011) Spatiotemporal heterogeneity of soil and sediment respiration in a river-floodplain mosaic (Tagliamento, NE Italy). Freshw Biol 56:1297–1311. https://doi.org/10.1111/j.1365-2427.2011.02569.x

    Article  Google Scholar 

  • Dziamski A, Banach-Szott M, Dębska B (2015) The effect of long-term irrigation of meadows on the state of organic matter. Acta Sci Pol Agr 14(2):15–27

    Google Scholar 

  • Findlay SEG, Sinsabaugh RL (2003) Aquatic ecosystems—interactivity of dissolved organic matter. Acad Press, Elsevier Science, USA

  • Food and Agriculture Organization of the United Nations (2014) World reference base for soil resources. World Soil Resources Reports 103. Rome: FAO, pp.132

  • Gonet SS, Dębska B (2006) Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant Soil Environ 52(2):55–63

    Article  CAS  Google Scholar 

  • Gonet SS, Dębska B, Zaujec A, Banach-Szott M, Szombathova N (2007) Effect of the tree species and soil-and-climate conditions on the properties of humus in forest soils. In: Gonet SS, Markiewicz M (eds) Role of organic matter in the environment. PTSH, Wrocław, pp 61–98

    Google Scholar 

  • Griffith SM, Schnitzer M (1975) Analytical characteristics of humic and fulvic acids extracted from tropical volcanic soils. Soil Sci Soc Am Proc 39:861–867

    Article  CAS  Google Scholar 

  • Guimaraes DV, Silva Gonzaga MI, da Silva TO, da Silva TL, da Silva Dias N, Silva Matias MI (2013) Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till Res 126:177–182. https://doi.org/10.1016/j.still.2012.07.010

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils. Adv Agron 85:221–268. https://doi.org/10.1016/S0065-2113(04)85005-3

    Article  CAS  Google Scholar 

  • Her N, Amy G, Foss D, Cho J, Yoon Y, Kosenka P (2002) Optimization of methods for detecting and characterizing NOM by HPLC-size-exclusion chromatography with UV and on-line detection. Environ Sci Technol 36:1069–1076. https://doi.org/10.1021/es015505j

    Article  CAS  Google Scholar 

  • Hoffmann T, Glatzel S, Dikau R (2009) A carbon storage perspective on alluvial sediment storage in the Rhine catchment. Geomorphology 108:127–137. https://doi.org/10.1016/j.geomorph.2007.11.015

    Article  Google Scholar 

  • Kobierski M, Piotrowska A (2010) Profile distribution of heavy metals and enzymatic activity in Fluvisols of the Vistula river valley, Poland. Fresen Environ Bull 19(2a):303–311

    CAS  Google Scholar 

  • Kondratowicz-Maciejewska K, Banach-Szott M, Kobierski M (2010) Physicochemical properties of humic acids of Fluvisols from Unisław Basin. Soil Sci Ann 61(4):123–127

    CAS  Google Scholar 

  • Kordowski J (2013) The role of blocks of dead ice in the deposition of late glacial sediments in a large valley: a case study from the Vistula river valley in the Grudziądz Basin, north Poland. Geogr Pol 86(4):341–361

    Article  Google Scholar 

  • Langhans SD, Richard U, Rueegg J, Uehlinger U, Edwards P, Doering M, Tockner K (2012) Environmental heterogeneity affects input, storage, and transformation of coarse particulate organic matter in a floodplain mosaic. Aquat Sci 75:335–348. https://doi.org/10.1007/s00027-012-0277-0

    Article  CAS  Google Scholar 

  • Lanyi K (2010) Assessment of the relations between the spectroscopic characteristics of soils and their ability to adsorb organic pollutants. Microchem J 79:249–256. https://doi.org/10.1016/j.microc.2004.08.008

    Article  CAS  Google Scholar 

  • Lepane V, Leeben A, Malashenko O (2004) Characterization of sediment pore-water dissolved organic matter of lakes by high-performance size exclusion chromatography. Aquat Sci 66(2):185–194. https://doi.org/10.1007/s00027-004-0703-z

    Article  CAS  Google Scholar 

  • Maie N, Yamashita Y, Cory RM, Boyer J, Jaffe R (2012) Application of excitation emission matrix fluorescence monitoring in the assessment of spatial and seasonal drivers of dissolved organic matter composition: sources and physical disturbance controls. Appl Geochem 27(4):917–929. https://doi.org/10.1016/j.apgeochem.2011.12.021

    Article  CAS  Google Scholar 

  • McCarthy P (2001) The principles of humic substances. Soil Sci 166:738–751

    Article  Google Scholar 

  • Morozova GS, Smith ND (2003) Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sediment Geol 157:15–29. https://doi.org/10.1016/S0037-0738(02)00192-6

    Article  CAS  Google Scholar 

  • Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T (2001) Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere 45:865–873. https://doi.org/10.1016/S0045-6535(01)00103-5

    Article  CAS  Google Scholar 

  • PN-EN ISO 11260 (2011) Soil quality—determination of effective cation exchange capacity and base saturation- method by sieving and sedimentation

  • PN-ISO-11277 (2005) Soil quality—determination of particle size distribution in mineral soil material level using level barium chloride solution

  • Preuße G, Friedrich S, Salzer R (2000) Retention behavior of humic substances in reversed phase HPLC. Fresen J Anal Chem 368:268–273. https://doi.org/10.1007/s002160000457

    Article  Google Scholar 

  • Rosa E, Dębska B, Banach-Szott M, Tobiasova E (2015) Use of HPLC, py-GCMS, FTiR methods in the studies of the composition of soil dissolved organic matter. Pol J Soil Sci XLVIII/1:101–110. https://doi.org/10.17951/pjss/2015.48.1.101

    Article  Google Scholar 

  • Saint-Laurent D, Lavoie L, Drouin A, St-Laurent J, Chaleb B (2010) Floodplain sedimentation rates, soil properties and recent flood history in southern Quebec. Glob Planet Chang 70:76–91. https://doi.org/10.1016/j.gloplacha.2009.11.009

    Article  Google Scholar 

  • Spaccini R, Piccolo A, Conte P, Haberhauer G, Gerzabek MH (2002) Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Biochem 34:1839–1851. https://doi.org/10.1016/S0038-0717(02)00197-9

    Article  CAS  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimise an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Watanabe A, Moroi K, Sato H, Tsutsuki K, Maie N, Melling L, Jaffe R (2012) Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates. Chemosphere 88:1265–1268. https://doi.org/10.1016/j.chemosphere.2012.04.005

    Article  CAS  Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, London, pp 1–43

    Google Scholar 

  • Wierzbicki G, Mazgajski M (2011) Ice-jam flood of the Vistula River in the Varsaw Basin during February and March 2010. Sci Rev - Eng Environ Sci 51:52–60

    Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF, Jaffe R, Xenopoulus MA (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171. https://doi.org/10.4319/lo.2010.55.3.1159

    Article  CAS  Google Scholar 

  • Wu FC, Evans RD, Dillon PJ (2003) Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection. Environ Sci 37:3687–3693. https://doi.org/10.1021/es020244e

    Article  CAS  Google Scholar 

  • Wu FC, Evans RD, Dillon PJ, Cai YR (2007) Rapid quantification of humic and fulvic acids by HPLC in natural waters. Appl Geochem 22:1598–1605. https://doi.org/10.1016/j.apgeochem.2007.03.043

    Article  CAS  Google Scholar 

  • Zwoliński Z (1992) Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology 4:367–379

    Article  Google Scholar 

Download references

Acknowledgements

The research has been made as part of 2716/B/P01/2011/40 research project, financed by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Banach-Szott.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banach-Szott, M., Kondratowicz-Maciejewska, K. & Kobierski, M. Humic substances in Fluvisols of the Lower Vistula floodplain, North Poland. Environ Sci Pollut Res 25, 23992–24002 (2018). https://doi.org/10.1007/s11356-018-2454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2454-8

Keywords

  • Fluvial processes
  • Humic acids
  • HPLC
  • HPSEC