Skip to main content

Advertisement

Log in

Removal of urea from dilute streams using RVC/nano-NiOx-modified electrode

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Reticulated vitreous carbon (RVC), a high surface area electrode (40 cm2/cm3), has been modified with nickel oxide nanoparticles (nano-NiOx) and used for electrochemical oxidation of urea from alkaline solution. For the cyclic voltammetry measurements, the used dimensions are 0.8 cm × 0.8 cm × 0.3 cm. The purpose was to offer high specific surface area using a porous open network structure to accelerate the electrochemical conversion. NiOx nanoparticles have been synthesized via an electrochemical route at some experimental conditions. The morphological, structural, and electrochemical properties of the RVC/nano-NiOx are characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and potentiostatic measurements. The fabricated electrode, RVC/nano-NiOx, demonstrates high electrocatalytic activity towards urea oxidation in an alkaline electrolyte. The onset potential of the RVC/nano-NiOx compared to that of the planar GC/NiOx is shifted to more negative value with higher specific activity. The different loadings of the NiOx have a substantial influence on the conversion of urea which has been evaluated from concentration-time curves. The urea concentration decreases with time to a limit dependent on the loading extent. Maximum conversion is obtained at 0.86 mg of NiOx per cm3 of the RVC matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bockris JOM, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Plenum, New York, p 223

    Book  Google Scholar 

  • Czerwiński A, Obrębowski S, Kotowski J, Rogulski Z, Skowroński JM, Krawczyk P, Rozmanowski T, Bajsert M, Przystałowski M, Buczkowska-Biniecka M, Jankowsk E, Baraniak M (2010) Electrochemical behavior of negative electrode of lead-acid cells based on reticulated vitreous carbon carrier. J Power Sources 195:7524–7529

    Article  CAS  Google Scholar 

  • Dalmolin C, Biaggio SR, Rocha-Filho RC, Bocchi N (2010) Reticulated vitreous carbon/polypyrrole composites as electrodes for lithium batteries: preparation, electrochemical characterization and charge–discharge performance. Synth Met 160:173–179

    Article  CAS  Google Scholar 

  • Dell'Era A, Pasquali M, Lupi C, Zaza F (2014) Purification of nickel or cobalt ion containing effluents by electrolysis on reticulated vitreous carbon cathode. Hydrometallurgy 150:1–8

    Article  CAS  Google Scholar 

  • El-Khatib KM, Abdel Hameed RM (2011) Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosens Bioelectron 26:3542–3548

    Article  CAS  Google Scholar 

  • El-Refaei SM, Awad MI, El-Anadouli BE, Saleh MM (2013a) Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: optimization of the loading level and order of deposition. Electrochim Acta 92:460–467

    Article  CAS  Google Scholar 

  • El-Refaei SM, Saleh MM, Awad MI (2013b) Enhanced glucose electrooxidation at a binary catalyst of manganese and nickel oxides modified glassy carbon electrode. J Power Sources 223:125–128

    Article  CAS  Google Scholar 

  • Guo Y, Hu J, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  • Guo F, Ye K, Du M, Huang X, Cheng K, Wang G, Cao D (2016) Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium. Electrochim Acta 210:474–482

    Article  CAS  Google Scholar 

  • Hernández MC, Russo N, Panizza M, Spinelli P, Fino D (2014) Electrochemical oxidation of urea in aqueous solutions using a boron-doped thin-film diamond electrode diamond. Relat Mater 44:109–116

    Article  CAS  Google Scholar 

  • Komab S, Seyam M, Momm T, Osaka T (1997) Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochim Acta 42:383–388

    Article  Google Scholar 

  • Lepage G, Albernaz FO, Perrier G, Merlin G (2012) Characterization of a microbial fuel cell with reticulated carbon foam electrodes. Bioresour Technol 124:199–207

    Article  CAS  Google Scholar 

  • Liu R, Liu R, Ma X, Davis BH, Li Z (2018) Efficient diesel production over the iron-based Fischer–Tropsch catalyst supported on CNTs treated by urea/NaOH. Fuel 211:827–836

    Article  CAS  Google Scholar 

  • Lohrasbi E, Asgari M (2015) Electrooxidation of urea on the nickel oxide nanoparticles and multi-walled carbon nanotubes modified screen printed electrode. Adv Anal Chem 5:9–18

    CAS  Google Scholar 

  • Mahmoud MH, Abdel-Salam OE, Abdel-Monem NM, Nassar AF, El-Halwany MA (2013) Removal of urea from industrial waste water using electrochemical decomposition. Life Sci J 10:2048–2055

    Google Scholar 

  • Maltosz M, Newman J (1986) Experimental investigation of a porous carbon electrode for the removal of mercury from contaminated brine. J Elecrochem Soc 133:1850–1859

    Article  Google Scholar 

  • Martínez SS, Bahena CL (2009) Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents. Water Res 43:33–40

    Article  CAS  Google Scholar 

  • Maruyama J, Abe I (2002) Cathodic oxygen reduction at the interface between Nafion® and electrochemically oxidized glassy carbon surfaces. J Electroanal Chem 527:65–70

    Article  CAS  Google Scholar 

  • Patzer JF, Wolfson SKJ, Yao SJ (1991) Platinized-titanium electrodes for urea oxidation Part II. Concentric spiral coil geometry. J Mol Catal 70:231–242

    Article  CAS  Google Scholar 

  • Ramírez G, Javier RF, Herrasti P, Ponce-de-León C, Sirés I (2016) Effect of RVC porosity on the performance of PbO2 composite coatings with titanate nanotubes for the electrochemical oxidation of azo dyes. Electrochim Acta 204:9–17

    Article  CAS  Google Scholar 

  • Razumas V, Kanapieniené J, Nylander T, Engström S, Larsson K (1994) Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Anal Chim Acta 289:155–162

    Article  CAS  Google Scholar 

  • Recio FJ, Herrasti P, Sirés L, Kulak AN, Bavykin DV, Ponce-de-León C, Walsh FC (2011) The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim Acta 56:5158–5165

    Article  CAS  Google Scholar 

  • Roh H (2008) Characterization of the acoustic properties of random porous media: reticulated vitreous carbon and aluminum foam. J Korean Phys Soc 53:607–616

    Article  CAS  Google Scholar 

  • Saleh MM, Awad MI, Okajima T, Suga K, Ohsaka T (2007) Characterization of oxidized reticulated vitreous carbon electrode for oxygen reduction reaction in acid solutions. Electrochim Acta 52:3095–3104

    Article  CAS  Google Scholar 

  • Shi W, Ding R, Li X, Xu Q, Liu E (2017) Enhanced performance and electrocatalytic kinetics of Ni-Mo/graphene nanocatalysts towards alkaline urea oxidation reaction. Electrochim Acta 242:247–259

    Article  CAS  Google Scholar 

  • Simka W, Piotrowski J, Nawrat G (2007) Influence of anode material on electrochemical decomposition of urea. Electrochim Acta 52:5696–5703

    Article  CAS  Google Scholar 

  • Tammam RH, Fekry AM, Saleh MM (2015) Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles. Int J Hydrog Energy 40:275–283

    Article  CAS  Google Scholar 

  • Theis JR (2016) An assessment of Pt and Pd model catalysts for low temperature NOx adsorption. Catal Today 267:93–109

    Article  CAS  Google Scholar 

  • Urbańczyk E, Sowa M, Simka W (2016) Urea removal from aqueous solutions—a review. J Appl Electrochem 46:1011–1029

    Article  CAS  Google Scholar 

  • Valdez HCA, Jiménez GG, Granados SG, Ponce de Leon C (2012) Degradation of paracetamol by advanced oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere 89:1195–1201

    Article  CAS  Google Scholar 

  • Valik K, Schiffrin DJ, Tammeveski K (2004) Electrochemical reduction of oxygen on anodically pre-treated and chemically grafted glassy carbon electrodes in alkaline solutions. Elecrochem Commun 6:1–5

    Article  CAS  Google Scholar 

  • Vedharathinam V, Botte GG (2012) Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim Acta 81:292–300

    Article  CAS  Google Scholar 

  • Vilana J, Gómez E, Vallés E (2016) Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation. Appl Surf Sci 360:816–825

    Article  CAS  Google Scholar 

  • Walsh FC, Arenas LF, Ponce de León C, Reade GW, Whyte I, Mellor BG (2016) The continued development of reticulated vitreous carbon as a versatile electrode material: structure, properties and applications. Electrochim Acta 215:566–591

    Article  CAS  Google Scholar 

  • Wang L, Xie B, Gao N, Min B, Liu H (2017) Urea removal coupled with enhanced electricity generation. Environ Sci Pollut Res 24:20401–20408

    Article  CAS  Google Scholar 

  • Windner RC, Sousa MFB, Bertazzoli R (1998) Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode. J Appl Electrochem 28:201–207

    Article  Google Scholar 

  • Xu X, Zhou Y, Yuan T, Li Y (2013) Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of grapheme oxide with urea. Electrochim Acta 112:587–595

    Article  CAS  Google Scholar 

  • Yan W, Wang D, Botte GG (2012) Electrochemical decomposition of urea with Ni-based catalysts. Appl Catal, B 127:221–226

    Article  CAS  Google Scholar 

  • Ye K, Zhang D, Guo F, Cheng K, Wang G, Cao D (2015) Highly porous nickel carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium. J Power Sources 283:408–415

    Article  CAS  Google Scholar 

  • Yu J, Tang ZA, Yan GZ, Chan PCH, Huang ZX (2009) An experimental study on micro-gas sensors with strip shape tin oxide thin films. Sensors Actuators B Chem 139:346–352

    Article  CAS  Google Scholar 

  • Zuo L, Zhang Y, Zhang L, Miao Y, Wei F, Liu T (2015) Polymer/carbon-based hybrid aerogels: preparation. Prop Appl Mat 8:6806–6848

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. Saleh.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tammam, R.H., Touny, A.H. & Saleh, M.M. Removal of urea from dilute streams using RVC/nano-NiOx-modified electrode. Environ Sci Pollut Res 25, 19898–19907 (2018). https://doi.org/10.1007/s11356-018-2223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2223-8

Keywords