Skip to main content
Log in

Promoting sun light-induced photocatalytic degradation of toxic phenols by efficient and stable double metal cyanide nanocubes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aromatic substituted phenols and their by-products discharged from numerous industries are of environmental concern due to their toxic, carcinogenic, recalcitrant, and bioaccumulating properties. Therefore, their complete removal from waters by low-cost, efficient, environmentally friendly nanomaterial-based treatment techniques is desirable. Double metal cyanide complexes (DMCC) are the extremely useful heterogeneous and recoverable catalyst. Hence, green route has been developed for several DMCC and their photocatalytic efficiency was evaluated for degradation of toxic phenols. Herein, nanocubes for hexacyanocobaltate of iron (FeHCC ~ 200 nm), nickel (NiHCC < 10 nm), and zinc (ZnHCC ~ 500 nm) were synthesized after employing Aegle marmelos. Subsequently, at neutral pH and sunlight irradiation, 15 mg of catalysts were able to degrade the maximum extent of phenols (1 × 10−4 M) in the order: 3-aminophenol (96% ZnHCC > 94% FeHCC > 93% NiHCC) > phenol (94% ZnHCC > 92% FeHCC > 91% NiHCC) > 2,4-DNP (92% ZnHCC > 91% FeHCC > 90% NiHCC). This is attributed to highest basicity of 3-aminophenol containing excess of free electrons. Highest catalytic potential of ZnHCC (Xm = 0.54–0.43 mg/g) is because of its highest surface area and negative zeta potential along with sharp morphology and crystallinity. Adsorption of phenols over catalyst was statistically significant with Langmuir isotherms (R2 ≥ 0.96; p value ≤ 0.05). Small and non-toxic by-products like oxalic acid, benzoquinone, (Z)-hex-3-enedioic acid, (Z)-but-2-enal, and (Z)-4-oxobut-2-enoic acid were identified in GC-MS. Degradation modes involving hydroxylation, oxidative skeletal rearrangement, and ring opening clearly supported enhanced oxidation of phenols by OH. Overall, due to greater active sites, high surface activity, low band gap, and semiconducting nature, DMCC revealed promising potential for solar photocatalytic remediation of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261(1–2):3–18

    Article  CAS  Google Scholar 

  • Ali I, Kim SR, Kim SP, Kim JO (2017) Anodization of bismuth doped TiO2 nanotubes composite forphotocatalytic degradation of phenol in visible light. Cata Today 282:31–37

    Article  CAS  Google Scholar 

  • Anastas PT, Zimmerman JB (2007) Why we need a green nano award & how to make it happen. Woodrow Wilson International Center for Scholars, Washington DC, p 1

    Google Scholar 

  • Annachatre AP, Gheewala SH (1996) Biodegradation of chlorinated phenolic compounds. Biotechnol Adv 14(1):35–56

    Article  Google Scholar 

  • Arana J, Pulido Melian E, Rodrıguez Lopez VM, Pena Alonso A, Dona Rodrıguez JM, Gonzalez Dıaz O, Perez Pena J (2007) Photocatalytic degradation of phenol and phenolic compounds. Part I. Adsorption and FTIR study. J Hazard Mater 146:520–528

    Article  CAS  Google Scholar 

  • Arana J, Dona-Rodríguez JM, Portillo-Carrizo D, Fernández-Rodríguez C, Pérez-Pena J, González Díaz O, Navío JA, Macías M (2010) Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. App Cata B Environ 100:346–354

    Article  CAS  Google Scholar 

  • Babich H, Davis DL (1981) Phenol: a review of environmental and health risks. Regul Toxicol Pharmacol 1:90–109

    Article  CAS  Google Scholar 

  • Baker EL, Landrigan PJ, Bertozzi PE, Field PH, Basteyns BJ, Skinner HG (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33(2):89–94

    Article  CAS  Google Scholar 

  • Baliga MS, Harshith P, Nandhini B, Fazal JF (2011) Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): A concise review. Food Res Int 44:1768–1775

    Article  CAS  Google Scholar 

  • Bartlett J, Brunner M, Gough K (2010) Deliberate poisoning with dinitrophenol (DNP): an unlicensed weight loss pill. Emerg Med J 27(2):159–160

    Article  Google Scholar 

  • Bokare AD, Chikate RC, Rode CV, Paknikar KM (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B 79:270–278

    Article  CAS  Google Scholar 

  • Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    Article  CAS  Google Scholar 

  • Chen S, Hua ZJ, Fang Z, Qi GR (2004) Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 45:6519–6524

    Article  CAS  Google Scholar 

  • Chen X, Liu Y, Xia X, Wang L (2017) Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol. App Surf Sci 407:470–478

    Article  CAS  Google Scholar 

  • Chiou CH, Juang RS (2007) Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. J Hazard Mater 149:1–7

    Article  CAS  Google Scholar 

  • Chiou CH, Wu CY, Juang RS (2008) Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem Eng J 139:322–329

    Article  CAS  Google Scholar 

  • Choquette-Labbé M, Shewa WA, Lalman JA, Shanmugam SR (2014) Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: integrating quantitative and qualitative factors using response surface methodology. Water 6:1785–1806

    Article  Google Scholar 

  • Colon G, Sanchez-Espana JM, Hidalgo MC, Navo JA (2006) Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. J Photochem Photobiol A Chem 179:20–27

    Article  CAS  Google Scholar 

  • Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol 162:317–322

    Article  CAS  Google Scholar 

  • DeSimone JM (2002) Practical approaches to green solvents. Science 297:799

    Article  CAS  Google Scholar 

  • Drijvers D, Van Langenhove H, Beckers M (1999) Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process. Water Res 33:1187–1194

    Article  CAS  Google Scholar 

  • Dunbar KR, Heintz RA (1997) Chemistry of transition metal cyanide compounds: modern perspectives. Prog Inorg Chem 45:283–291

    CAS  Google Scholar 

  • El-Ashtoukhy SZ, El-Taweel YA, Abdelwahab O, Nassef EM (2013) Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int J Electrochem Sci 8:1534–1550

    CAS  Google Scholar 

  • García-Ortiz A, Grirrane A, Edilso Reguera E, García H (2014) Mixed (Fe2+ and Cu2+) double metal hexacyanocobaltates as solid catalyst for the aerobic oxidation of oximes to carbonyl compounds. J Catal 311:386–392

    Article  Google Scholar 

  • Gómez J, Bódalo A, Gómez E, Hidalgo A, Gómez M, Murcia M (2008) A transient design model of a continuous tank reactor for removing phenol with immobilized soybean peroxidase and hydrogen peroxide. Chem Eng J 145:142–148

    Article  Google Scholar 

  • Grirrane A, Corma A, Garcia H (2009) Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322:1661

    Article  Google Scholar 

  • Guadagnini L, Tonelli D, Giorgetti M (2010) Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection. Electrochim Acta 55:5036–5039

    Article  CAS  Google Scholar 

  • Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO2 in wastewater. Chem Eng J 119:55–59

    Article  CAS  Google Scholar 

  • Gupta S, Ashrith G, Chandra D, Gupta AK, Finkel KW, Guntupalli JS (2008) Acute phenol poisoning: a life-threatening hazard of chronic pain relief. Clinical Toxicol 46:250–253

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2011) Decay profile and metabolic pathways of quinalphos in water, soil and plants. Chemosphere 85(5):710–716. https://doi.org/10.1016/j.chemosphere.2011.05.059

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R (2012a) Degradation of thiram in water, soil and plants: a study by high-performance liquid chromatography. Biomed Chromatogr 26:69–75

    Article  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2012b) Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J Environ Sci Health Part B 47(8):823–831. https://doi.org/10.1080/03601234.2012.676487

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2012c) In vitro and in vivo studies on degradation of quinalphos in rats. J Hazard Mater 213–214:285–291

    Article  Google Scholar 

  • Hartman MR, Peterson VK, Liu Y, Kaye SS, Long JR (2006) Neutron diffraction and neutron vibrational spectroscopy studies of hydrogen adsorption in the Prussian blue analogue Cu3 [Co (CN) 6]2. Chem Mater 18:3221–3224

    Article  CAS  Google Scholar 

  • Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402

    Article  CAS  Google Scholar 

  • Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J Mole Cata A Chem 263:32–38

    Article  CAS  Google Scholar 

  • Jadhav DN, Vanjara AK (2004) Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon. Indian J Chem Technol 11:35–41

    CAS  Google Scholar 

  • Jassal V, Shanker U, Shankar S (2015a) Synthesis characterization and applications of nano-structured metal hexacyanoferrates: a review. J Environ Anal Chem 2:1000128–1000141

    Article  Google Scholar 

  • Jassal V, Shanker U, Kaith BS, Shankar S (2015b) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5(33):26141–26149. https://doi.org/10.1039/C5RA03266K

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Kaith BS (2016a) Aegle marmelos mediated green synthesis of different nanostructured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes. Scientifica 2016:1–13. https://doi.org/10.1155/2016/2715026

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Gahlot S (2016b) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4- aminopyridines. Mater Today Proc 3(6):1874–1882. https://doi.org/10.1016/j.matpr.2016.04.087

    Article  Google Scholar 

  • Jassal V, Shanker U, Gahlot S, Kaith BS, Kamaluddin IMA, Samuel P (2016c) Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines. Appl Phys A Mater Sci Process 122(4):271–282. https://doi.org/10.1007/s00339-016-9777-4

    Article  CAS  Google Scholar 

  • Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  • Kashif N, Ouyang F (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J Environ Sci 21:527–533

    Article  CAS  Google Scholar 

  • Kasiri MB, Aleboyeh H (2008) Degradation of acid blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-fenton catalyst. Appl Catal B Environ 84:9–15

    Article  CAS  Google Scholar 

  • Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507

    Article  CAS  Google Scholar 

  • Khan A, Liao Z, Liu Y, Jawad A, Ifthikar J, Chen Z (2017) Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst. J Hazard Mater 329:262–271

    Article  CAS  Google Scholar 

  • Krap CP, Balmaseda J, Zamora B, Reguera E (2010) Hydrogen storage in the iron series of porous Prussian blue analogues. Int J Hydrogen Energy 35(19):10381–11038

    Article  CAS  Google Scholar 

  • Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K (2004) Heterogeneous photocatalytic mineralization of phenols in aqueous solutions. J Mol Catal A Chem 223:101–105

    Article  CAS  Google Scholar 

  • Lewin JF, Cleary WT (1982) An accidental death caused by the absorption of phenol through skin. A case report. Forensic Sci Int 19(2):177–179

    Article  CAS  Google Scholar 

  • Li X, Liu J, Rykov AI, Han H, Jin C, Liu X, Wang J (2015) Excellent photo-Fenton catalysts of Fe–Co Prussian blue analogues and their reaction mechanism study. Appl Catal B 179:196–205

    Article  CAS  Google Scholar 

  • Ling H, Kim K, Liu Z, Shi J, Zhu X, Huang J (2015) Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles. Catal Today 258:96–102

    Article  CAS  Google Scholar 

  • Lu Y, Jiang J, Huang W (2011) Clinical features and treatment in patients with acute 2,4-dinitrophenol poisoning. J Zhejiang Univ Sci B 12(3):189–192

    Article  CAS  Google Scholar 

  • Ma J, Zhang LZ, Wang YH, Lei SL, Luo XB, Chen SH, Zeng GS, Zou JP, Luo SL, Au CT (2014) Mechanism of 2,4-dinitrophenol photocatalytic degradation by ε-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chem Eng J 251:371–380

    Article  CAS  Google Scholar 

  • Malekshoar G, Pal K, He Q, Yu A, Ray AK (2014) Enhanced solar photocatalytic degradation of phenol with coupled graphene-based titanium dioxide and zinc Oxide. Ind Eng Chem Res 53(49):18824–18832

    Article  CAS  Google Scholar 

  • Mehrvar M, Anderson WA, Moo-Young M (2001) Photocatalytic degradation of aqueous organic solvents in the presence of hydroxyl radical scavengers. Int J Photoenergy 3:187–191

    Article  CAS  Google Scholar 

  • Mir NA, Khan A, Muneer M, Vijayalakhsmi S (2013) Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment. Sci Tot Environ 458–460:388–398

    Article  Google Scholar 

  • Moore JG, Lochner EJ, Ramsey C, Dalal NS, Stiegman AE (2003) Transparent, superparamagnetic KICoII[FeIII(CN)6]–silica nanocomposites with tunable photomagnetism. Angew Chem Int Ed 42:2741–2743

    Article  CAS  Google Scholar 

  • Moussavi G, Mahmoudi M, Barikbin B (2008) Biological removal of phenol from strong wastewaters using a novel MSBR. Water Res 43:1295–1302

    Article  Google Scholar 

  • Nezamzadeh-Ejhieh A, Amiri M (2013) CuO supported clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol 235:279–288

    Article  CAS  Google Scholar 

  • Peeters A, Valvekens P, Ameloot R, Sankar G, Kirschhock CEA, De Vos DE (2013) Zn−Co double metal cyanides as heterogeneous catalysts for hydroamination: a structure−activity relationship. ACS Catal 3:597–607

    Article  CAS  Google Scholar 

  • Pitarch E, Portoles T, Marin JM, Ibanez M, Albarran F, Hernandez F (2010) Analytical strategy based on the use of liquid chromatography and gas chromatography with triple-quadrupole and time-of-flight MS analyzers for investigating organic contaminants in wastewater. Anal Bioanal Chem 397(7):2763–2776

    Article  CAS  Google Scholar 

  • Pradeep NV, Anupama S, Arunkumar JM, Vidyashree KG, Ankitha K, Lakshmi P, Pooja J (2014) Treatment of sugar industry wastewater in anaerobic down flow stationary fixed film (DSFF) reactor. Sugar Tech 16(1):9–14

    Article  CAS  Google Scholar 

  • Pyrasch M, Toutianoush A, Jin W, Schnepf J, Tieke B (2003) Self-assembled films of Prussian blue and analogues: optical and electrochemical properties and application as ion-sieving membranes. Chem Mater 15:245–254

    Article  CAS  Google Scholar 

  • Rani M (2012) Studies on decay profiles of quinalphos and thiram pesticides. Ph.D Thesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India, Chapter 1, pp 5

  • Rani M, Shanker U (2017a) Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1512-y

  • Rani M, Shanker U (2017b) Removal of carcinogenic aromatic amines by metal hexacyanoferrates nanocubes synthesized via green process. J Env Chem Eng 5(6):5298–5311. https://doi.org/10.1016/j.jece.2017.10.028

    Article  CAS  Google Scholar 

  • Rani M, Shanker U (2018a) Effective adsorption and enhanced degradation of various pesticides from aqueous solution by Prussian blue nanorods. J Env Chem Eng 6:1512–1521

    Article  CAS  Google Scholar 

  • Rani M, Shanker U (2018b) Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. Environ Sci Pollut Res 25:10878–10893

    Article  CAS  Google Scholar 

  • Rani M, Shanker U (2018c) Advanced treatment technologies. In: Hussain C (eds) Handbook of Environmental Materials Management. Springer Cham.https://doi.org/10.1007/978-3-319-58538-3_33-1

  • Rani M, Shanker U, Jassal V (2017a) Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222

    Article  CAS  Google Scholar 

  • Rani M, Shanker U, Chaurasia A (2017b) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Env Chem Eng 5(3):2730–2739. https://doi.org/10.1016/j.jece.2017.05.026

    Article  CAS  Google Scholar 

  • Rani M, Rachna, Shanker U (2018) Metal hexacyanoferrates nanoparticles mediated degradation of carcinogenic aromatic amines. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2018.04.005

  • Raveendran P, Fu J, Wallen SL (2003) Completely “Green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  • Riga A, Soutsas K, Ntampegliotis K, Karayannis V, Papapolymerou G (2007) Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 21:72–79

    Article  Google Scholar 

  • Risset ON, Knowles ES, Ma SQ, Meisel MW, Talham DR (2013) Effects of lattice misfit on the growth of coordination polymer heterostructures. Chem Mater 25:42–47

    Article  CAS  Google Scholar 

  • Said M, Ahmad A, Wahab MA (2013) Removal of phenol during ultrafiltration of Palm oil mill effluent (POME): effect of pH, ionic strength, pressure and temperature. Der Pharma Chemica 5(3):190–196

    CAS  Google Scholar 

  • Sajjad AKL, Shamaila S, Tian B, Chen F, Zhang J (2010) Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J Hazard Mater 177:781–791

    Article  CAS  Google Scholar 

  • San N, Hatipoglu A, Koçtürk G, Çınar Z (2001) Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 139:225–232

    Article  CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresour Technol 99:205–209

    Article  CAS  Google Scholar 

  • Sato O, Lyoda T, Fujishima A, Hashimoto K (1996) Electrochemically tunable magnetic phase transition in a high-Tcchromium cyanide thin film. Science 271:49–51

    Article  CAS  Google Scholar 

  • Sato O, Abe Y, Fujishima A, Hashimoto K (1999) Ferromagnetism of cobalt-chromium polycyanides. Phys Rev Lett 82:1285

    Article  Google Scholar 

  • Shahrezaei F, Mansouri Y, Zinatizadeh AAL, Akhbari A (2012) Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol 221:203–212

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M, Kaith BS (2016a) Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. Int J Env Anal Chem 96:801–835

    CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2016b) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC Adv 6:94989–94999

    Article  CAS  Google Scholar 

  • Shanker U, Rani M, Jassal V (2017a) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15(4):623–642. https://doi.org/10.1007/s10311-017-0650-2

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017b) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Env Chem Eng 5:4108–4120

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017c) Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. J Environ Manag 204:337–348

    Article  CAS  Google Scholar 

  • Shukla SS, Dorris KL, Chikkaveeraiah BV (2009) Photocatalytic degradation of 2,4-dinitrophenol. J Hazard Mater 164:310–314

    Article  CAS  Google Scholar 

  • Singh A, Kumar V, Srivastava JN (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. Pet Environ Biotechnol 4(3):1–4

    CAS  Google Scholar 

  • Sobczynski A, Duczmal L, Zmudzinski W (2004) Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J Mol Catal A Chem 213:225–230

    Article  CAS  Google Scholar 

  • Stamatis N, Hela D, Konstantinou I (2010) Occurrence and removal of fungicides in municipal sewage treatment plant. J Hazard Mater 175:829–835

    Article  CAS  Google Scholar 

  • Sun XK, Zhang XH, Liu F, Chen S, Du BY, Wang Q et al (2008) Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co III double metal cyanide complex hybrid catalysts with a nanolamellar structure. J Polym Sci A Polym Chem 46:3128–3133

    Article  CAS  Google Scholar 

  • Sun XK, Zhang XH, Chen S, Du BY, Wang Q, Fan ZQ, Qi GR (2010) One-pot terpolymerization of CO2, cyclohexene oxide and maleic anhydride using a highly active heterogeneous double metal cyanide complex catalyst. Polymer 51:5719–5725

    Article  CAS  Google Scholar 

  • Swaranalatha B, Anjaneyulu Y (2003) Studies on the heterogeneous photocatalytic oxidation of 2,6-dinitrophenol in aqueous TiO2 suspension. J Mol Catal A: Chem 223:161–165

    Article  Google Scholar 

  • Uemura T, Kitagawa S (2003) Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc 125:7814–7815

    Article  CAS  Google Scholar 

  • Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43:7339–7345

    Article  CAS  Google Scholar 

  • US FDA (2003) US FDA (Food & Drug Administration) Questions and Answers on Prussian Blue, U.S. Department of Health & Human Services (2003), https://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130337.htm

  • Varma RJ, Gaikwad BG (2008) Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells. Enzym Microb Technol 43:431–435

    Article  CAS  Google Scholar 

  • Vo V, Van MN, Lee HI, Kim JM, Kim Y, Kim SJ (2000) A new route for obtaining Prussian blue nanoparticles. Mater Chem Phy 107:6–8

    Article  Google Scholar 

  • Wang HL, Liang WZ, Zhang Q, Jiang WF (2010) Solar-light-assisted Fenton oxidation of 2,4-dinitrophenol (DNP) using Al2O3-supported Fe(III)-5-sulfosalicylic acid (ssal) complex as catalyst. Chem Eng J 164:115–120

    Article  CAS  Google Scholar 

  • Wang F, Li W, Gu S, Li H, Liu X, Wang M (2016) Fabrication of FeWO4@ZnWO4/ZnO heterojunction photocatalyst: synergistic effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO heterojunction structure on the enhancement of visible-light photocatalytic activity. ACS Sustain Chem Eng 4(12):6288–6298

    Article  CAS  Google Scholar 

  • Wei TY, Wang YY, Wei CC (1991) Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders. J Photochem Photobiol A Chem 55:115–126

    Article  Google Scholar 

  • Xu L, Hu YL, Pelligra C, Chen CH, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib SL (2009) ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem Mater 21(13):2875–2885

    Article  CAS  Google Scholar 

  • Yang SC, Lei M, Chen TB, Li XY, Liang Q, Ma C (2010) Application of zerovalent iron (Fe0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant. Chemosphere 79(7):727–732. https://doi.org/10.1016/j.chemosphere.2010.02.046

    Article  CAS  Google Scholar 

  • Yuan Z, Jia JH, Zhang L (2002) Influence of co-doping of Zn(II) + Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Mater Chem Phys 73:323–326

    Article  CAS  Google Scholar 

  • Zakharchuk NF, Naumov N, Stosser R, Schroder U, Scholz F, Mehner HJ (1999) Solid state electrochemistry, X-ray powder diffraction, magnetic susceptibility, electron spin resonance, Mössbauer and diffuse reflectance spectroscopy of mixed iron (III)-cadmium(II) hexacyanoferrates. Solid-State Electrochem 3:264–276

    Article  CAS  Google Scholar 

  • Zhang X, Wang Y, Li G (2005) Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst. J Mol Catal A Chem 237:199–205

    Article  CAS  Google Scholar 

  • Zhang XH, Hua ZJ, Chen S, Liu F, Sun XK, Qi GR (2007) Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide. Appl Catal A Gen 325:91–98

    Article  CAS  Google Scholar 

  • Zhang XH, Liu F, Sun XK, Chen S, Du BY, Qi GR et al (2008) Atom-exchange coordination polymerization of carbon disulfide and propylene oxide by a highly effective double-metal cyanide complex. Macromolecules 41:1587–1590

    Article  CAS  Google Scholar 

  • Zhang X, Wang L, Liu C, Ding Y, Zhang S, Zeng Y, Liu Y, Luo S (2016) A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol. J Hazard Mater 313:244–252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-FIST New Delhi for providing the equipment (UV-VIS spectrophotometer) used in characterization of the samples. Authors are also thankful to MNIT Jaipur and SAIF Laboratory, Panjab University, for TEM and GC-MS analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Shanker.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Shanker, U. Promoting sun light-induced photocatalytic degradation of toxic phenols by efficient and stable double metal cyanide nanocubes. Environ Sci Pollut Res 25, 23764–23779 (2018). https://doi.org/10.1007/s11356-018-2214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2214-9

Keywords

Navigation