Skip to main content

Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism’s deactivation

Abstract

One-pot synthesis of a new magnetic disinfectant was achieved through the polymerization of thiourea and formaldehyde in the presence of magnetite nanoparticles (MTUF). The obtained magnetic chelating resin was loaded with Ag(I) ions. This material was tested as a disinfectant for water pathogenic microorganism’s deactivation. The toxicity of MTUF before and after Ag(I) loading was estimated. The antimicrobial activity tests of MTUF-Ag were carried out against Escherichia coli, Salmonella Typhimurium, and Pseudomonas aeruginosa as examples of Gram-negative bacteria; Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis as examples of Gram-positive bacteria; and Candida albicans as representative for fungi. The results showed that the minimum inhibitory dosage (MID) of MTF-Ag against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and mixed culture were 1.5, 2.0, 1.0, 1.5, and 1.5 mg/mL, respectively, after 40 min of contact time. While C. albicans was more resistant to the magnetic disinfectant, only three log reductions were done at 2.5 mg/mL. The studied MTUF-Ag was successfully tested for water and wastewater pathogenic microorganism’s deactivation. It can be concluded that MTUF-Ag could be a good candidate for water disinfection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abbas SY, El-Sharief MAMS, Basyouni WM, Fakhr IMI, El-Gamma EW (2013) Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities. Eur J Med Chem 64:111–120

    Article  CAS  Google Scholar 

  2. Ahamad T, Alshehri SM (2013) Physiochemical characterization and antimicrobial evaluation of phenylthiourea–formaldehyde polymer (PTF) based polymeric ligand and its polymer metal complexes. Spectrochim Acta A Mol Biomol Spectrosc 108:26–31

    Article  CAS  Google Scholar 

  3. Ahamad T, Kumar V, Nishat N (2006) Synthesis, characterization and antimicrobial activity of transition metal chelated thiourea-formaldehyde resin. J Polym Int 55:1398–1406

    Article  CAS  Google Scholar 

  4. Ahamad T, Kumar V, Nishat N (2009) New class of anti-microbial agents: synthesis, characterization, and anti-microbial activities of metal chelated polyurea. J Biomed Mater Res A 88:288–294

    Article  CAS  Google Scholar 

  5. APHA (American Public Health Association) (2012) Standard methods for the examination of water and wastewater, 22nd ed. Washington, D.C.

  6. Ayuba SB, Mallikarjuna RP, Vasantha KN, Kavitha M (2014) In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 153:587–595

    Article  Google Scholar 

  7. Baheiraei N, Moztarzadeh F, Hedayati M (2012) Preparation and antibacterial activity of Ag/SiO2 thin film on glazed ceramic tiles by sol–gel method. Ceram Int 38:2921–2925

    Article  CAS  Google Scholar 

  8. Bechambi O, Chalbi M, Najjar W, Sayadi S (2015) Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of it santibacterial activity. Appl Surf Sci 347:414–420

    Article  CAS  Google Scholar 

  9. Bindhu MR, Umadevi M (2014) Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta A Mol Biomol Spectrosc 128:37–45

  10. Ce’liz G, Daz M, Audisio MC (2011) Antibacterial activity of naringin derivatives against pathogenic strains. J Appl Microbiol 111:731–738

    Article  CAS  Google Scholar 

  11. Chamakura K, Perez-Ballestero R, Luo Z, Bashir S, Liu J (2011) Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf B Biointerfaces 84:88–96

    Article  CAS  Google Scholar 

  12. Chen C, Chiang C, Chen C (2007) Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Sep Purif Technol 54:396–403

    Article  CAS  Google Scholar 

  13. Darby J, Heath M, Jacangelo J, Loge F, Swaim P, Tchobanoglous G (1995) Comparison of UV irradiation to chlorination: guidance for achieving optimal UV performance. Water Environment Research Foundation, Alexandria, Virginia

    Google Scholar 

  14. Dong Y-Y, Deng F, Zhao J-J, He J, Ma MG, Xu F, Sun R-C (2014) Environmentally friendly ultrasound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohydr Polym 99:166–172

    Article  CAS  Google Scholar 

  15. Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87:197–206

    Article  CAS  Google Scholar 

  16. El-Lathy MA, El-Taweel GE, El-Sonosy WM, Samhan FA, Moussa TA (2009) Determination of pathogenic bacteria in wastewater using conventional and PCR techniques. Environ Biotechnol 5:73–80

    Google Scholar 

  17. Elwakeel KZ, Al-Bogami AS (2018) Influence of Mo(VI) immobilization and temperature on As(V) sorption onto magnetic separable poly p-phenylenediamine-thiourea-formaldehyde condensate. J Hazard Mater 342:335–346

    Article  CAS  Google Scholar 

  18. Elwakeel KZ, El-Sadik HA, Abdel-Razek AS, Beheary MS (2012) Environmental remediation of thorium(IV) from aqueous medium onto Cellulosimicrobium cellulans isolated from radioactive wastewater. Desalin Water Treat 46:1–9

    Article  CAS  Google Scholar 

  19. Elwakeel KZ, El-Bindary AA, El-Sonbati AZ, Hawas AR (2016) Adsorption of toxic acidic dye from aqueous solution onto diethylenetriamine functionalized magnetic glycidyl methacrylate-N, N′-methylenebisacrylamide. RSC Adv 6:335–3361

    Google Scholar 

  20. Elwakeel KZ, Daher AM, Abd El-Fatah AIL, Abd El Monem H, Khalil MMH (2017) Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. J Disper Sci Technol 38:145–151

    Article  CAS  Google Scholar 

  21. Ertan E, Gülfen M (2009) Separation of gold(III) ions from copper(II) and zinc(II) ions using thiourea–formaldehyde or urea–formaldehyde chelating resins. J Appl Polym Sci 111:2798–2805

    Article  CAS  Google Scholar 

  22. Fakhar I, Hussien NJ, Sapari S, Bloh AH, Yusoff SFM, Hasbullah SA, Yamin BM, Mutalib SA, Shihab MS, Yousif E (2018) Synthesis, X-ray diffraction, theoretical and anti-bacterial studies of bis-thiourea secondary amine. J Mol Struct 1159:96–102

    Article  CAS  Google Scholar 

  23. Feng Q L, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

  24. Ferreira M, Assunçao LS, Silva AH, Filippin-Monteiro FB, Creczynski-Pasa TB, Sa MM (2017) Allylic isothiouronium salts: the discovery of a novel class of thiourea analogues with antitumor activity. Eur J Med Chem 129:151–158

    Article  CAS  Google Scholar 

  25. Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27:16–23

    Article  Google Scholar 

  26. Guldiren D, Aydın S (2017) Antimicrobial property of silver, silver-zinc and silver-copper incorporated soda lime glass prepared by ion exchange. Mater Sci Eng C 78:826–832

    Article  CAS  Google Scholar 

  27. Hasnain S, Zulfequar M, Nishat N (2012) Adsorption properties of thermally stable and biologically active polyurea: its synthesis and spectral aspects. Polym Adv Technol 23:1002–1010

    Article  CAS  Google Scholar 

  28. Isab AA, Nawaz S, Saleem M, Altaf M, Monim-ul-Mehboob M, Ahmad S, Evans HS (2010) Synthesis, characterization and antimicrobial studies of mixed ligand silver (I) complexes of thioureas and triphenylphosphine; crystal structure of {[Ag (PPh3)(thiourea)(NO3)]2·[Ag (PPh3)(thiourea)]2 (NO3)2}. Polyhedron 29(4):1251–1256

    Article  CAS  Google Scholar 

  29. Jamil TS, Mansor ES, El-Liethy MA (2015) Photocatalytic inactivation of E. coli using nano-size bismuth oxyiodide photocatalysts under visible light. J Environ Chem Eng 3:2463–2471

    Article  CAS  Google Scholar 

  30. Jang KH, Yu YJ, Lee YH, Kang YO, Park OH (2014) Antimicrobial activity of cellulose-based nanofibers with different Ag phases. Mater Lett 16:146–149

    Article  CAS  Google Scholar 

  31. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  CAS  Google Scholar 

  32. Kalinowska-Lis U, Felczak A, Chęcińska L, Lisowska K, Ochocki J (2014) Synthesis, characterization and antimicrobial activity of silver(I) complexes of hydroxymethyl derivatives of pyridine and benzimidazole. J Organomet Chem 749:394–399

    Article  CAS  Google Scholar 

  33. Karakuş S, Güniz Küçükgüzel S, Küçükgüzel I, De Clercq E, Pannecouque C, Andrei G, Snoeck R, Sahin F, Bayrak OF (2009) Synthesis, antiviral and anticancer activity of some novel thioureas derived from N-(4-nitro-2-phenoxyphenyl)-methanesulfonamide. Eur J Med Chem 44(2009):3591–3595

    Article  CAS  Google Scholar 

  34. Khraisheh M, Wu L, Al-Muhtaseb AH, Al-Ghouti MA (2015) Photocatalytic disinfection of Escherichia coli using TiO2 P25 and Cu-doped TiO2. J Ind Eng Chem 28:369–376

    Article  CAS  Google Scholar 

  35. Liu S-J, Jiang J-Y, Wang S, Guo Y-P, Ding H (2018) Assessment of water-soluble thiourea-formaldehyde (WTF) resin for stabilization/solidification (S/S) of heavy metal contaminated soils. J Hazard Mater 346:167–173

    Article  CAS  Google Scholar 

  36. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534

    Article  CAS  Google Scholar 

  37. Muslu N, Gülfen M (2011) Selective separation and concentration of Pd(II) from Fe(III), Co(II), Ni(II), and Cu(II) ions using thiourea-formaldehyde resin. J Appl Polym Sci 120(6):3316–3324

    Article  CAS  Google Scholar 

  38. Nawaz M, Han MY, Kim T, Manzoor U, Amin MT (2012) Silver disinfection of Pseudomonas aeruginosa and E. coli in rooftop harvested rainwater for potable purposes. Sci Total Environ 431:20–25

    Article  CAS  Google Scholar 

  39. Ni C, Yi C, Feng Z (2001) Studies of syntheses and adsorption properties of chelating resin from thiourea and formaldehyde. J Appl Polym Sci 82(13):3127–3132

    Article  CAS  Google Scholar 

  40. Nishat N, Rasool R, Khan SA, and Parveen S (2011) Synthesis and characterization of metal-incorporated aniline formaldehyde resin modified by amino acid for antimicrobial applications. J Coord Chem 64:4054–4065

  41. Pan J, Wang S, Zhang R (2006) Preparation and modification of macroporous epoxy-triethylenetetramine resin for preconcentration and removal of Hg(II) in aqueous solution. J Appl Polym Sci 102:2372–2378

    Article  CAS  Google Scholar 

  42. Panahi HA, Sharif AAM, Bigonah M, Moniri E (2009) Preconcentration and determination of chromium in water with flame atomic absorption spectrometry by thiourea-formaldehyde as chelating resin. Korean J Chem Eng 26:1723–1728

    Article  CAS  Google Scholar 

  43. Prüss-Ustün A, Bartram J, Clasen T, Colford JM, Cumming O, Curtis V, Bonjour S et al (2014) Burden of disease from inadequate water, sanitation and hygiene in low- and middle- income settings: a retrospective analysis of data from 145 countries. Tropical Med Int Health 19:894–905

    Article  Google Scholar 

  44. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  45. Rivas BL, Maureira AN, Guzmán CS (2010) Water-soluble polymers and their polymer-metal ion-complexes as antibacterial agents. Macromol Symp 287:69–79

    Article  CAS  Google Scholar 

  46. Sedlak DL, Gunten UV (2011) The chlorine dilemma. Science 331:42–43

    Article  CAS  Google Scholar 

  47. West DX, Sallberg MM, Bain GA, Liberta AE (1997) Nickel (II) and copper (II) complexes of 5-substituted-salicylaldehyde thiosemicarbazones. Transit Met Chem 22(2):180–184

    Article  CAS  Google Scholar 

  48. WHO (World Health Organization) (2008) Guideline for drinking–water quality. Incorporating 1st and 2nd addenda, volume 1, recommendations, 3rd Ed; WHO: Geneva

  49. Yirikoglu H, Gülfen M (2008) Separation and recovery of silver(I) ions from base metal ions by melamine–formaldehyde–thiourea (MFT) chelating resin. Sep Sci Technol 43:376–388

    Article  CAS  Google Scholar 

  50. Zhang S, Fu R, Wu D, Xu BW, Ye Q, Chen Z (2004) Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels. Carbon 42:3209–3216

    Article  CAS  Google Scholar 

  51. Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J 210:45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to say thanks to the Virus Consulting Unit, National Research Centre, Egypt, for proving facilities for carrying out this research work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Khalid Z. Elwakeel or Mohamed Azab El-Liethy.

Ethics declarations

Conflict of interests

The authors have not declared any conflict of interests.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 656 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elwakeel, K.Z., El-Liethy, M.A., Ahmed, M.S. et al. Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism’s deactivation. Environ Sci Pollut Res 25, 22797–22809 (2018). https://doi.org/10.1007/s11356-018-2071-6

Download citation

Keywords

  • Magnetic thiourea formaldehyde
  • Disinfectant
  • Silver
  • Pathogens
  • Water treatment