Abstract
The main objective of the study was to assess the efficiency of phytoremediation methods implemented for 14 years on highly metal-contaminated soils. The different experimental strategies were plots planted with a tree mix or with a single tree species coupled or not with the use of fly-ashes as an amendment to limit metals mobility in soil. The breakdown of poplar litter on the four plots was monitored during 10 months. In parallel, colonization of litter bags by functional groups of mesofauna (Collembola and Acari) was followed. Two mesh-sized litter bags were used to allow distinguishing microbial and mesofaunal actions on the litter breakdown. We observed the breakdown of litter in four studied plots. Litter breakdown occurred faster in 3-mm litter bags than 250 μm ones during summer demonstrating the importance of mesofauna. Mixed plantation allowed faster litter breakdown than mono-specific plantation. A higher abundance of mesofauna and/or better abiotic conditions (moisture, shading…) could explain this result. Regarding litter breakdown and mesofauna, no significant difference was observed between the amended plots and those subjected to soil phytomanagement. However, communities of the studied area are disturbed since a low abundance of detritivores was observed. This could explain also the slower litter breakdown than expected in our study. To conclude, among the phytomanagement methods tested, mixed plantations could provide a benefit for the restoration of degraded soils. By contrast, the use of fly-ashes does not seem to have any effect on the functionality of ecosystem neither on the litter breakdown process nor on the abundance of mesofauna.
This is a preview of subscription content, access via your institution.









References
Adl SM (2003) The ecology of soil composition. CABI Publ. https://doi.org/10.1079/9780851996615.0000
Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843. https://doi.org/10.1111/ele.12469
Anderson JM, Ineson P, Huish SA (1983) The effects of animal feeding activities on element release from deciduous forest litter and soil organic matter. Lebrun, Ph., André, H.M., Medts, A., Grégoire-Wibo, C., Wauthy, G. New trends soil Biol. Dieu- Brichart, Ottignies-Louvain-la-Neuve, Internatio. UCL - Ecologie Animale, pp 87–100
André O, Vollenweider P, Günthardt-Goerg MS (2006) Foliage response to heavy metal contamination in Sycamore Maple (Acer pseudoplatanus L.). Forest Snow Landscape Res 80(3):275–288
Ayres E, Steltzer H, Berg S, Wall DH (2009a) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912. https://doi.org/10.1111/j.1365-2745.2009.01539.x
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH (2009b) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. https://doi.org/10.1016/j.soilbio.2008.12.022
Bärlocher F (2005) Leaf mass loss estimated by litter bag technique. Methods to Study Litter Decompos. A Pract. Guid. Springer Science & Business Media, pp 37–42
Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of european forests. For Ecol Manag 132:39–50. https://doi.org/10.1016/S0378-1127(00)00378-9
Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Adv Adv Ecol Res. https://doi.org/10.1007/s13398-014-0173-7.2
Berg B, McClaugherty C (2008) Plant litter decomposition, humus formation,carbon sequestration. Springer. https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
Bidar G, Louvel B, Pourrut B, et al (2014) Filière « bois » : Phytostabilisation aidée ; Comportement de la végétation arborée : Bilan de 13 années d’expérimentation. Séminaire Gest. requalification durable des sites sols polluésExpériences en Nord. Calais, 25 26 Sept. 2014, Villeneuve d’Ascq, Fr p 23
Bidar G, Waterlot C, Verdin A, Proix N, Courcot D, Détriché S, Fourrier H, Richard A, Douay F (2016) Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: effects on the vertical distribution of physicochemical parameters and trace elements. J Environ Manag 171:204–216. https://doi.org/10.1016/j.jenvman.2016.01.029
Bradshaw HD, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313. https://doi.org/10.1007/s003440000030
Büchs W (2003) Biodiversity and agri-environmental indicators—general scopes and skills with special reference to the habitat level. Agric Ecosyst Environ 98:35–78. https://doi.org/10.1016/S0167-8809(03)00070-7
Butterfield J (1999) Changes in decomposition rates and Collembola densities during the forestry cycle in conifer plantations. J Appl Ecol 36:92–100. https://doi.org/10.1046/j.1365-2664.1999.00382.x
Carroll G (1980) Forest canopies: complex and independent subsystems. Forests: Fresh Perspectives from Ecosystem Analysis. Oregon State University Press, Corvallis
Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. https://doi.org/10.1038/35012241
Chomel M, DesRochers A, Baldy V, Larchevêque M, Gauquelin T (2014) Non-additive effects of mixing hybrid poplar and white spruce on aboveground and soil carbon storage in boreal plantations. For Ecol Manag 328:292–299. https://doi.org/10.1016/j.foreco.2014.05.048
Chomel M, Guittonny-Larchevêque M, DesRochers A, Baldy V (2015) Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Ecosystems 18:1014–1028. https://doi.org/10.1007/s10021-015-9880-y
Cluzeau D, Bellido A, Boulonne L, et al (2009) RMQS BioDiv Bretagne Rapport final. Tome 6 Mesofaune 75
Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateille T, Philippot L, Bellido A, Rougé L, Arrouays D, Bispo A, Pérès G (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72. https://doi.org/10.1016/j.ejsobi.2011.11.003
Coineau Y (1974) Introduction a l’etude des microarthropodes du sol et de ses annexes, Doin
Coineau Y, Cleva R, Du Chatenet G (1997) Ces animaux minuscules qui nous entourent., Les guides
Coleman DC, Crosseley DA. (1996) Fundamentals of soil ecology. Academic Press
Comeau PG, Harper GJ (2009) Effects of vegetation control treatments for release of Engelmann spruce from a mixed-shrub community in southern British Columbia—year 15 results. For Chron 85:583–592. https://doi.org/10.5558/tfc85583-4
Cortet J, Gomot-De Vauflery A, Poinsot-Balaguer N et al (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35:115–134. https://doi.org/10.1016/S1164-5563(00)00116-3
Couteaux MM, Bottner P, Berg B (1995) Litter decomposition climate and litter quality. Trends Ecol Evol 10:63–66. https://doi.org/10.1016/S0169-5347(00)88978-8
Crossley DA, Hoglund MP (1962) A litter-bag method for the study of microarthropods inhabiting leaf litter. Ecology 43:571–573. https://doi.org/10.2307/1933396
de Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272. https://doi.org/10.1016/j.ecocom.2009.10.006
Demuynck S, Succiu IR, Grumiaux F, Douay F, Leprêtre A (2014) Effects of field metal-contaminated soils submitted to phytostabilisation and fly ash-aided phytostabilisation on the avoidance behaviour of the earthworm Eisenia fetida. Ecotoxicol Environ Saf 107:170–177. https://doi.org/10.1016/j.ecoenv.2014.05.011
Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Bidar G, Grand C, de Vaufleury A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the North of France. Sci Total Environ 407:5564–5577. https://doi.org/10.1016/j.scitotenv.2009.06.015
Dwivedi S, Tripathi RD, Srivastava S, Mishra S, Shukla MK, Tiwari KK, Singh R, Rai UN (2007) Growth performance and biochemical responses of three rice ( Oryza sativa L .) cultivars grown in fly-ash amended soil. Chemosphere 67:140–151. https://doi.org/10.1016/j.chemosphere.2006.09.012
Edwards CA (2002) Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. Eur J Soil Biol 38:225–231. https://doi.org/10.1016/S1164-5563(02)01150-0
Edwards CA, Reichle DE, Crossley Jr DA (1970) The role of soil invertebrates in turnover of organic matter and nutrients. Anal. Temp. For. Ecosyst. Springer Berlin Heidelberg, pp 147–172
Favas PJC, Pratas J, Varun M, et al (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Environ. risk Assess. soil Contam. Hernandez-Soriano, M.C. (Eds), InTec, pp 485–517
Fritsch C, Giraudoux P, Coeurdassier M, Douay F, Raoul F, Pruvot C, Waterlot C, de Vaufleury A, Scheifler R (2010) Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere 81:141–155
Frouz J (1999) Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance. Agric Ecosyst Environ 74:167–186. https://doi.org/10.1016/S0167-8809(99)00036-5
Frouz J, Roubíčková A, Heděnec P, Tajovský K (2015) Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur J Soil Biol 68:18–24. https://doi.org/10.1016/j.ejsobi.2015.03.002
Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. https://doi.org/10.1111/j.0030-1299.2004.12738.x
Gorgievska AC, Prelić D, Hristovski S (2009) Spatial variation of terrestrial macrofauna along an urban-rural gradient in Skopje City and its surrounding. Proc III Congr Ecol Repub Maced with Int Particip 06–09
Grelle C, Fabre MC, Lepretre A, Descamps M (2000) Myriapod and isopod communities in soils contaminated by heavy metals in northern France. Eur J Soil Sci 51:425–433. https://doi.org/10.1046/j.1365-2389.2000.00317.x
Grumiaux F, Demuynck S, Pernin C, Leprêtre A (2015) Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicol Environ Saf 113:183–190. https://doi.org/10.1016/j.ecoenv.2014.12.004
Grumiaux F, Demuynck S, Schikorski D, Lemière S, Leprêtre A (2010) Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Chemosphere 79:156–161. https://doi.org/10.1016/j.chemosphere.2010.01.018
Grumiaux F, Pernin C, Demuynck S, et al (2013) Does fly ash-aided phytostabilisation of Pb, Cd and Zn highly contaminated soil improve soil fauna communities?; poster,12–16 may; SETAC Eur. Glas
Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23. https://doi.org/10.1016/S0929-1393(98)00048-1
Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95. https://doi.org/10.1016/S0378-1127(01)00549-7
Hautier Y, Tilman D, Isbell F et al (2015) Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348:336–340. https://doi.org/10.1126/science.aaa1788
Heneghan L, Coleman DC, Zou X, Crossley DA Jr, Haines BL (1998) Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Appl Soil Ecol 9:33–38. https://doi.org/10.1016/S0929-1393(98)00050-X
Henry HF, Burken JG, Maier RM, Newman LA, Rock S, Schnoor JL, Suk WA (2013) Phytotechnologies—preventing exposures, improving public health. Int J Phytoremediation 15:889–899
Hermle S, Günthardt-Goerg MS, Schulin R (2006) Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Environ Pollut 144:703–714. https://doi.org/10.1016/j.envpol.2005.12.040
Hodkinson ID, Coulson SJ, Webb NR, Block W (1996) Can high Arctic soil microarthropods survive elevated summer temperatures? Funct Ecol 10:314–321. https://doi.org/10.2307/2390278
Irmler U (2000) Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia (Jena) 44:105–118. https://doi.org/10.1078/S0031-4056(04)70032-3
Jacob M, Viedenz K, Polle A, Thomas FM (2010) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094. https://doi.org/10.1007/s00442-010-1699-9
Jeffery S, Gardi C, Jones A et al (2010) European atlas of soil biodiversity. Chart 92:141–165. https://doi.org/10.1016/S0016-7061(99)00028-2
Johnson D, Hale B (2004) White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environ Pollut 127:65–72
Karberg NJ, Scott N a, Giardina CP (2008) Methods for estimating litter decomposition. F. Meas. For. Carbon Monit. A landscape-scale approach. Springer Science, pp 103–111
Kochy Wilson SDM (1997) Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology 78:732–739
Kozlov MV, Zvereva EL (2015) Decomposition of birch leaves in heavily polluted industrial barrens: relative importance of leaf quality and site of exposure. Environmental Science and Pollution Research Environ Sci Pollut Res 22(13):9943–9950
Kumpiene J, Guerri G, Landi L, Pietramellara G, Nannipieri P, Renella G (2009) Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicol Environ Saf 72:115–119. https://doi.org/10.1016/j.ecoenv.2008.07.002
Labidi S, Fontaine J, Laruelle F, Tisserant B, Dalpé Y, Grandmougin-Ferjani A, Douay F, Sahraoui ALH (2015) Fly ash-aided phytostabilisation of highly trace element polluted topsoils improves the telluric fungal biomass: a long-term field experiment. Appl Soil Ecol 85:69–75. https://doi.org/10.1016/j.apsoil.2014.09.006
Lavelle P, Spain A (2001) Soil ecology. Springer Science & Business Media, 619 p
Lim SS, Choi WJ (2014) Changes in microbial biomass, CH4 and CO2 emissions, and soil carbon content by fly ash co-applied with organic inputs with contrasting substrate quality under changing water regimes. Soil Biol Biochem 68:494–502. https://doi.org/10.1016/j.soilbio.2013.10.027
Lopareva-Pohu A, Pourrut B, Waterlot C et al (2011) Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial. Part 1. Influence on soil parameters and metal extractability. Sci Total Environ 409:647–654. https://doi.org/10.1016/j.scitotenv.2011.07.047
Lucisine P, Lecerf A, Danger M, Felten V, Aran D, Auclerc A, Gross EM, Huot H, Morel JL, Muller S, Nahmani J, Maunoury-Danger F (2015) Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition. Sci Total Environ 537:213–224. https://doi.org/10.1016/j.scitotenv.2015.07.112
Macfadyen A (1953) Notes on methods for the extraction of small soil arthropods. J Anim Ecol 22:65–77. https://doi.org/10.2307/1691
Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070. https://doi.org/10.1007/s11368-010-0190-x
Mench M, Manceau A, Vangronsveld J et al (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agron EDP Sci 20:383–397. https://doi.org/10.1051/agro:2000135
Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Bio/Technol 7:47–59
Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being : Current State and Trends, Volume 1
Nahmani J, Lavelle P (2002) Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. Eur J Soil Biol 38:297–300. https://doi.org/10.1016/S1164-5563(02)01169-X
Nayak AK, Raja R, Rao KS, Shukla AK, Mohanty S, Shahid M, Tripathi R, Panda BB, Bhattacharyya P, Kumar A, Lal B, Sethi SK, Puri C, Nayak D, Swain CK (2015) Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicol Environ Saf 114:257–262. https://doi.org/10.1016/j.ecoenv.2014.03.033
Niemela J (1997) Invertebrates and boreal forest management. Conserv Biol 11:601–610. https://doi.org/10.1046/j.1523-1739.1997.06008.x
Oliver MA (1997) Soil and human health: a review. Eur J Soil Sci 48:573–592. https://doi.org/10.1111/j.1365-2389.1997.tb00558.x
Orgiazzi A, Bardgett RD, Barrios E et al (2016) Global soil biodiversity atlas. Eur C. https://doi.org/10.2788/799182
Panagos P, Hiederer R, Van Liedekerke M, Bampa F (2013) Review Article Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health Artical ID:1–11. https://doi.org/10.1016/j.ecolind.2012.07.020
Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27. https://doi.org/10.1016/j.agee.2009.11.013
Parkinson D (1988) Linkages between resource availability, microorganisms and soil invertebrates. Agric Ecosyst Environ 24:21–32. https://doi.org/10.1016/0167-8809(88)90053-9
Pelfrêne A, Douay F, Richard A, Roussel H, Girondelot B (2013) Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens. Environ Monit Assess 185:2999–3012. https://doi.org/10.1007/s10661-012-2767-x
Pérez J, Muñoz-Dorado J, De La Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63. https://doi.org/10.1007/s10123-002-0062-3
Pernin C, Demuynck S, Douay F, et al (2012) Une restauration de la biodiversité aux alentours de l’ ancienne fonderie Metaleurop Nord est-elle envisageable ? Quelques pistes …. Premières journées Tech. du réseau SAFIR “Les sites ateliers Nouv. Outil. pour la Rech. le Dev. sur les sites pollués”, 10 11 mai 2012, Roubaix, Fr. Roubaix, France, p 25
Petersen H (1982) Structure and size of soil animal populations. Oikos 39:306–357
Poinsot-Balaguer N (1990) Des insectes résistants la sécheresse. Sécheresse 1:265–271
Poinsot-Balaguer N, Tabone E (1985) Etude d’un écosystème forestier méditerranéen. I. Composition et structure des peuplements microarthropodiens du sol dans une forêt mixte (Chênes verts, Quercus ilex L., Chênes blancs, Quercus pubescens W.F.) de la région provençale. Bull d’écologie 16:149–160
Pourrut B, Lopareva-Pohu A, Pruvot C, Garçon G, Verdin A, Waterlot C, Bidar G, Shirali P, Douay F (2011) Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial. Part 2. Influence on plants. Sci Total Environ 409:4504–4510. https://doi.org/10.1016/j.scitotenv.2011.07.047
Pruvot C, Douay F, Empis A, Dubourguier H, Schartz C (2001) Etude des conditions de minéralisation de la matière organique dans les sols pollués. Rapport PRC, Environnement et Activités Humaines, Etude D’un Secteur Pollué Par Les Métaux, 90pp
Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. https://doi.org/10.1016/S0160-4120(02)00152-6
Ram LC, Masto RE (2014) Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments. Earth-Science Rev 128:52–74. https://doi.org/10.1016/j.earscirev.2013.10.003
Restbiodiv (2012) Restauration de la biodiversité sur des sols contaminés par des polluants métalliques. Rep Progr RESTBIODIV Support by OSEO-Région Nord Calais:161
Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266
Salt DE, Blaylock M, Kumar NP et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol (Nature Publ Company) 13:468–474. https://doi.org/10.1038/nbt0595-468
Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
Scheid S, Günthardt-Goerg MS, Schulin R, Nowack B (2009) Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. Eur J Soil Sci 60:613–621. https://doi.org/10.1111/j.1365-2389.2009.01153.x
Seastedt T (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46. https://doi.org/10.1146/annurev.en.29.010184.000325
Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001
Sheoran V, Sheoran AS, Poonia P (2012) Phytoremediation of metal contaminated mining sites. Int J Earth Sci Eng 5:428–436
Siddiqui ZA, Singh LP (2005) Effects of fly ash and soil micro-organisms on plant growth, photosynthetic pigments and leaf blight of wheat. J Plant Dis Prot 112:146–155
SOER (2010) The european environment: State and outlook 2010. Synthesis. European Environment Agency, Copenhagen. https://www.eea.europa.eu/soer/synthesis/synthesis
Southwood T, Henderson P (2000) Ecological methods third edition. Blackwell Publ Ltd 278:674. https://doi.org/10.1038/278674a0
Sterckeman T, Douay F, Proix N, Fourrier H (1996) Programme de Recherches Concertées : Etude d'un secteur pollué par les métaux. Typologie et cartographie des sols, inventaire des polluants minéraux, étude de la migration verticale de Cd, Cu, Pb et Zn. Conseil Régional Nord-Pas de Calais - Secrétariat d'Etat à la Recherche - ISA – INRA, pp 29
Sterckeman T, Douay F, Fourrier H, Proix N (2002a) Referentiel pedo-geochimique du Nord-Pas de Calais. Doc la Région Nord Calais du ministère l ’ Environ l ’ aménagement du Territ 128
Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002b) Assessment of the contamination of cultivated soil by eighteen trace elements around smelters in the north of France. Water Air Soil Pollut 135:173–194. https://doi.org/10.1023/A:1014758811194
Stork NE, Eggleton P (1992) Invertebrates as determinants and indicators of soil quality. Am J Altern Agric 7:38. https://doi.org/10.1017/S0889189300004446
Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689. https://doi.org/10.1093/aob/mcf255
Toth G, Montanarella L, Rusco E (2008) Threats to soil quality in europe. https://doi.org/10.2788/8647
Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustos P, Zupan M, Wenzel WW (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148:107–114
Van Nevel L, Mertens J, Demey A et al (2014) Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site. Environ Pollut 189:54–62. https://doi.org/10.1016/j.envpol.2014.02.009
Visioli G, Menta C, Gardi C, Conti FD (2013) Metal toxicity and biodiversity in serpentine soils: application of bioassay tests and microarthropod index. Chemosphere 90:1267–1273. https://doi.org/10.1016/j.chemosphere.2012.09.081
Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot 58:25–40. https://doi.org/10.1016/j.envexpbot.2005.06.012
Vossbrinck CR, Coleman DC, Woolley TA (1979) Abiotic and biotic factors in litter decomposition in a Sermiarid Grassland. Ecology 60:265–271. https://doi.org/10.2307/1937654
Vuidot A, Paillet Y, Archaux F, Gosselin F (2011) Influence of tree characteristics and forest management on tree microhabitats. Biol Conserv 144:441–450. https://doi.org/10.1016/j.biocon.2010.09.030
Wallwork JA (1983) Oribatids in forest ecosystems. Annu Rev Entomol 28:109–130. https://doi.org/10.1146/annurev.en.28.010183.000545
Wang Q, Zhong M, He T (2013) Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol Fertil Soils 49:427–434. https://doi.org/10.1007/s00374-012-0741-y
Woodcock TS, Huryn AD (2005) Leaf litter processing and invertebrate assemblages along a pollution gradient in a Maine (USA) headwater stream. Environ Pollut 134:363–375. https://doi.org/10.1016/j.envpol.2004.09.020
Xu GL, Kuster TM, Günthardt-Goerg MS, Dobbertin M, Li MH (2012) Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS One 7:23–27. https://doi.org/10.1371/journal.pone.0043102
Acknowledgements
The authors thank Agnieska Rorat for his language help and Sébastien Détriché for the realization of maps. This study was undertaken under the research program “ResBioFonc”.The authors are grateful to the company “STB Matériaux” for having authorized access at the experimental field.
Funding
Financial support for this work was provided by the Regional Council of Hauts-de-France, the “French Foundation for Research on Biodiversity” (FRB), and Catholic University of Lille.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Elena Maestri
Rights and permissions
About this article
Cite this article
Leclercq-Dransart, J., Santorufo, L., Pernin, C. et al. Litter breakdown as a tool for assessment of the efficiency of afforestation and ash-aided phytostabilization on metal-contaminated soils functioning in Northern France. Environ Sci Pollut Res 25, 18579–18595 (2018). https://doi.org/10.1007/s11356-018-2038-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-018-2038-7
Keywords
- Soil remediation
- Soil functionality
- Litter bag method
- Metal contamination
- Fly-ashes
- Phytomanagement
- Collembola
- Acari