Incidence of hydrological, chemical, and physical constraints on bacterial pathogens, Nocardia cells, and fecal indicator bacteria trapped in an urban stormwater detention basin in Chassieu, France

Abstract

The nature and fate of urban contaminants washed by stormwater events and accumulating in a detention basin (DB) were investigated. Relations between bacterial and chemical contaminants of trapped urban sediments, and field parameters were analyzed. Fecal indicators and some pathogens known to be environmentally transmitted (Nocardia, Pseudomonas aeruginosa, and Aeromonas caviae) were tracked, and their persistence investigated. Six sampling campaigns were carried out over 3 years, using five sites including a settling chamber (SC). Aerosolized bacteria at these sites were also monitored. Deposits in the basin were made of fine particles and their content in chemical pollutants was found highly variable. High polycyclic aromatic hydrocarbon (PAH) contents were measured but only three pesticides, over 22, were detected. Deposits were significantly contaminated by fecal indicator bacteria (FIB), P. aeruginosa, A. caviae, and by Nocardia. Only A. caviae showed significant numbers in aerosolized particles recovered over the detention basin. Nocardia spp. cells heavily contaminated the SC. The efficacy of the detention basin at reducing bacterial counts per rain event and over time were estimated. A slight drop in the counts was monitored for fecal indicators but not for the other bacterial groups. Hydrodynamic parameters had a strong impact on the distribution and features of the deposits. Multiple factors impacted the fate of FIB, P. aeruginosa, A. caviae, and Nocardia cells, but in a group dependent manner. Nocardia counts were found positively correlated with volatile organic matter. FIB appeared highly efficient colonizers of the DB.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Al-Bader D, Eliyas M, Rayan R, Radwan S (2012) Air–dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation. Environ Sci Pollut Res 19:3997–4005

    Article  CAS  Google Scholar 

  2. Al-Rubaei AM, Engström M, Viklander M, Blecken G-T (2016) Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland—finally maturated or in need of maintenance? Ecol Eng 95:73–82

    Article  Google Scholar 

  3. Araoju RM, Arribas RM, Pares R (1991) Distribution of Aeromonas species in waters with different level of pollution. J Appl Bacteriol 71:182–186

    Article  Google Scholar 

  4. Barraud S, Gibert J, Winiarski T, Bertrand Krajewski J-L (2002) Implementation of a monitoring system to measure impact of stormwater runoff infiltration. Water Science & Technology 45(3): 203–210

  5. Barrek S, Cren-olivé C, Wiest L, Baudot R, Arnaudghilem C, Grenier-Loustalot M-F (2008) Multi-residue analysis and ultra-trace quantification of 36 priority substances from the European Water Framework Directive by GC – MS and LC-FLD-MS / MS in surface waters. Talanta 79:712–722

    Article  CAS  Google Scholar 

  6. Becouze C, Wiest L, Baudot R, Bertrand-Krajewski J-L, Cren-Olive C (2011) Optimisation of pressurised liquid extraction for the ultra-trace quantification of 20 priority substances from the European Water Framework Directive in atmospheric particles by GC-MS and LC-FLD-MS/MS. Anal Chim Acta 693:47–53

    Article  CAS  Google Scholar 

  7. Becouze-Lareure C (2010) Caractérisation et estimation des flux de substances prioritaires dans les rejets urbains par temps de pluie sur deux bassins versants expérimentaux. PhD, INSA of Lyon, Villeurbanne (in French)

    Google Scholar 

  8. Bertrand-Krajewski J-L, Barraud S, Gibert J, Malard F, Winiarski T, Delolme C (2008) The OTHU case study: integrated monitoring of stormwater in Lyon, France. In T. Fletcher & A. Deletic, (ed) Data requirements for integrated urban water management, Leiden, Taylor & Francis, UNESCO, Paris, pp303–314

  9. Birch GF, Fazeli MS, Matthai C (2005) Efficiency of an infiltration basin in removing contaminants from urban stormwater. Environmental Monitoring Assessment 101(1–3):23–38

    CAS  Google Scholar 

  10. Bressy A, Gromaire M-C, Lorgeroux C, Saad M, Leroy F, Chebbo G (2014) Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation. Water Res 57:234–246

    Article  CAS  Google Scholar 

  11. Chocat B, Bertrand-Krajewski J-L, Barraud S (2007) Les eaux pluviales urbaines et les rejets urbains de temps de pluie. In T.I (ed) Les techniques de l’Ingénieur. Doc W6800, Saint Denis, (in French)

  12. Durand C (2003) Caractérisation physico-chimique des produits de l’assainissement pluvial. Origine et devenir des métaux traces et des polluants organiques. PhD, University of Poitiers, France (in French)

  13. Durand C, Ruban V, Amblès A, Oudot J (2004) Characterisation of the organic matter of sludge: determination of lipids, hydrocarbons and PAHs from road retention /infiltration ponds in France. Environ Pollut 132(3):375–384

    Article  CAS  Google Scholar 

  14. Durand C, Ruban V, Amblès A (2005) Characterisation of complex organic matter present in contaminated sediments from water retention ponds. J Anal Appl Pyrolysis 73(1):17–28

    Article  CAS  Google Scholar 

  15. EC (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. JO-EU L 226, 1–17

  16. Ellis B, Marsalek J & Chocat B (2005) Urban water quality. In M G Anderson, John Wiley & sons (ed) Encyclopedia of hydrological science, 8:97, pp1373–1386

  17. El-Mufleh A, Béchet B, Ruban V, Legret M, Clozel B, Barraud S, Gonzalez-Merchan C, Bedell J-P, Delolme C (2014) Physical and chemical characterizations of contaminated sediments from two urban stormwater infiltration basins—a synthesis of two decades of works and recommendations for sediment management in the framework of the French observatory for urban hydrology (SOERE URBIS). Environ Sci Pollut Res 21(8):5329–5346

    Article  CAS  Google Scholar 

  18. Flahaut S, Auffray Y, Boutibonnes P (1997) Les entérocoques dans l’environnement proche de l’homme. Can J Microbiol 43(8):699–708

    Article  CAS  Google Scholar 

  19. Gasperi J, Sébastian C, Ruban V, Delamain M, Percot S, Wiest L, Mirande C, Caupos E, Demare D, Diallo Kessoo M, Saad M, Schwartz J-J, Dubois P, Fratta C, Wolff H, Moilleron R, Chebbo G, Cren C, Millet M, Barraud S, Gromaire M-C (2014) Micropollutants in urban stormwater: occurrence, concentrations and atmospheric contribution for a wide range of contaminants on three French catchments. Environ Sci Pollut Res 21(8):5267–5281

    Article  CAS  Google Scholar 

  20. Górny RL, Dutkiewicz J, Krysińska-Traczyk E (1999) Size distribution of bacterial and fungal bioaerosols in indoor air. Annals of Agricultural and Environmental Medicine 6(2):105–113

    Google Scholar 

  21. Gourmelon M, Caprais MP, Kay D, Stapleton C (2010) Techniques de dépistage des sources de pollution microbiennes - Méthodologies, application et retour d’expériences en France et au Royaume-Uni. Technique Science Méthode 4:54–64

    Article  Google Scholar 

  22. Gy PM (2004) Sampling of discrete materials—a new introduction to the theory of sampling. Chemom Intell Lab Syst 74:7–24

    CAS  Google Scholar 

  23. Hirai Y (1991) Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J Hosp Infect 19(3):191–200

    Article  CAS  Google Scholar 

  24. Jacopin C, Bertrand-Krajewski JL, Desbordes M (1999) Characterisation and settling of solids in an open, grassed, stormwater sewer network detention basin. Water Sci Technol 39(2):135–144

    Article  CAS  Google Scholar 

  25. Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212

    Google Scholar 

  26. Laurent FJ, Provost F, Boiron P (1999) Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J Clin Microbiol 37(1):99–102

    CAS  Google Scholar 

  27. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 70(1):20–29

    Article  CAS  Google Scholar 

  28. Le TN-C, Mikolasch A, Awe S, Sheikhany H, Klenk H-P, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50(3):241–253

    Article  CAS  Google Scholar 

  29. Legret M, Le Marc C, Demare D, Colandini V (1995) Heavy metals contamination in a decantation basin receiving road runoff. Environ Technol 16:1049–1060

    Article  CAS  Google Scholar 

  30. Leys NM, Bastiaens L, Verstraete W, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Applied Microbiology Biotechnology 66(6):726–736

    Article  CAS  Google Scholar 

  31. Li Y, Deletic A, Fletcher TD (2007) Modelling wet weather sediment removal by stormwater constructed wetlands: insights from a laboratory study. J Hydrol 338:285–296

    Article  Google Scholar 

  32. Marti R, Bécouze-Lareure C, Ribun S, Marjolet L, Bernardin -Souibgui C, Aubin J-B, Lipeme Kouyi G, Wiest L, Blaha D, Cournoyer B (2017) Bacteriome genetic structures of urban deposits mobilized by runoffs are impacted by chemical pollutants and indicative of their origin. Sc. Report 7:13219

    Google Scholar 

  33. Martin-Carnahan A, Joseph SW (2005) Aeromonadales ord. nov. In: Brenner DJ, Krieg NR, Staley JT et al (eds) Bergey’s manual® of systematic bacteriology. Springer US, pp 556–587

    Google Scholar 

  34. Monfort P, Baleux B (1990) Dynamics of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae in a sewage treatment pond. Applied Environmental Microbiology 56(7):1999–2006

    CAS  Google Scholar 

  35. NMHSPE (2000) Circular on target values and intervention values for soil remediation. The Netherlands Ministry of Housing, Spatial Planning and the Environment. p 51. available at https://www.esdat.net/Environmental Standards/Dutch/annexS_I2000Dutch Environmental Standards.pdf. Accessed 19 Apr 2017

  36. Pétavy F (2007) Traitement et valorisation des sédiments de l’assainissement pluvial. PhD, Ecole central of Nantes and University of Nantes, France. (in French)

  37. Pétavy F, Ruban V, Conil P (2009) Treatment of stormwater sediments: efficiency of an attrition scrubber—laboratory and pilot-scale studies. Chem Eng J 145(3):475–482

    Article  CAS  Google Scholar 

  38. Petit (2012) Écologie et dangerosité des Pseudomonas aeruginosa des milieux aquatiques anthropisés. PhD. University of Lyon 1, Villeurbanne (in French)

    Google Scholar 

  39. Pitt R, Clark S, Parmer K. (1994) Potential groundwater contamination from intentional and non intentional stormwater infiltration. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-94/051 pp187

  40. Prusty BAK, Chandra R, Azeez PA (2009) Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitat system in India. Aust J Soil Res 47(2):177

    Article  CAS  Google Scholar 

  41. Reynolds TL, Barnes HJ, Wolfe B, Lu L, Camp DM, Malarkey DE (2009) Bilateral nocardial endophthalmitis in a prothonotary warbler (Protonotaria citrea). Vet Pathol 1:120–123

    Article  Google Scholar 

  42. Rossi L (1998) Qualité des eaux de ruissellement urbaines. PhD, Ecole Polytechnique Fédérale de Lausanne, Suisse (in French)

    Google Scholar 

  43. Ruban V, Larrarte F, Berthier M, Favreau L, Sauvourel Y, Letellier L, Mosini M, Raimbault G (2005) Quantitative and qualitative hydrologic balance for a suburban watershed with a separate sewer system (Nantes, France). Water Sci Technol 51(2):231–238

    Article  CAS  Google Scholar 

  44. Sansalone JJ, Buchberger SG (1997) Characterization of solid and metal element distributions in urban highway stormwater. Water Sci Technol 36(8–9):155–160

    Article  CAS  Google Scholar 

  45. Sébastian C (2013) Bassin de retenue des eaux pluviales en milieu urbain : performance en matière de piégeage des micropolluants. PhD.,INSA of Lyon, France (in French)

  46. Sébastian C, Ruban V, Moilleron R, Barraud S, Chebbo G, Gromaire M-C, Lorgeoux C, Gasperi J, Cren C, Wiest L, Demare D, Millet M, Saad M, Percot S, Maro D (2011) INOGEV project—an original French approach in micropollutant characterization assessment in urban wet weather effluents and atmospheric deposits. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil, 10–15 September 2011 - pp 8

  47. Sébastian C, Barraud S, Becouze-Lareure C, Gonzalez-Merchan C, Lipeme Kouyi G, Gibello C (2013) Accumulated sediments in a large dry stormwater retention-detention basin: physico-chemical spatial characterization and evolution - Estimation of metals, pesticides, PAHs and Alkylphenols contents. 8th international conference NOVATECH, 23-27 June 2013, Lyon, pp 10

  48. Sébastian C, Barraud S, Ribun S, Zoropogui A, Blaha D, Becouze-Lareure C, Lipeme Kouyi G, Cournoyer B (2014) Accumulated sediments in a detention basin: chemical and microbial hazards assessment linked to hydrological processes. Environ Sci Pollut Res 21(8):5367–5378

    Article  CAS  Google Scholar 

  49. Sébastian C, Becouze-Lareure C, Lipeme Kouyi G, Barraud S (2015) Event-based quantification of emerging pollutant removal for an open stormwater retention basin—loads, efficiency and importance of uncertainties. Water Res 72(1):239–250

    Article  CAS  Google Scholar 

  50. Silkeborg municipality (2009) Task E, 5th delivery: Final report on the environmental and technical performance of the treatment unit process. TREASURE LIFE06 ENV/DK/000229. http://www.life-treasure.com/PublicFiles/Final_report_environmental_technical.pdf. Accessed 15juin 2015

  51. Silva CM, Evangelista-Barreto NS, Vieira RHSDF, Mendonça KV, de Sousa OV (2014) Population dynamics and antimicrobial susceptibility of Aeromonas spp. along a salinity gradient in an urban estuary in Northeastern Brazil. Mar Pollut Bull 89(1–2):96–101

    Article  CAS  Google Scholar 

  52. Sun S, Barraud S, Castebrunet H, Aubin J-B, Marmonier P (2015) Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment. Water Res 85:432–442

    Article  CAS  Google Scholar 

  53. Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 7:1395. https://doi.org/10.3389/fmicb.2016.01395

    Article  Google Scholar 

  54. Thompson LJ, Gray V, Lindsay D, von Holy A (2006) Carbon: nitrogen: phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. J Appl Microbiol 101(5):1105–1113

    Article  CAS  Google Scholar 

  55. Torres A (2008) Décantation des eaux pluviales dans un ouvrage réel de grande taille : éléments de réflexion pour le suivi et la modélisation. PhD, INSA of Lyon, France (in French)

  56. Ukpaka CP, Orji C, Orji AG (2014) The influence of chemical and biochemical oxygen demands on the kinetics of crude oil degradation in salt water pond. Sky Journal of Biochemistry Research 3(1):001–013

    Google Scholar 

  57. Urbonas B (1994) Assessment of stormwater BMPs and their technology. Water Sci Technol 29(1–2):347–353

    Article  Google Scholar 

  58. Weinstein JE, Crawford KD, Garner TR, Flemming AJ (2010) Screening-level ecological, and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA. J Hazard Mater 178:906–9016

    Article  CAS  Google Scholar 

  59. Wilson JW (2012) Nocardiosis: updates and clinical overview. Mayo Clin Proc 87(4):403–407

    Article  Google Scholar 

  60. Xu J, Liu H, Liu J, Liang R (2015) Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil. Acta Micobiologica Sinica 55(6):755–763

    Google Scholar 

  61. Yan H, Lipeme Kouyi G, Gonzalez-Merchan C, Becouze-Lareure C, Sébastian C, Barraud S, Bertrand- Krajewski J-L (2014) Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin. Environmental Science Pollution Research 21(8):5347–5356

    Article  CAS  Google Scholar 

  62. Zgheib S, Moilleron R, Saad M, Chebbo G (2011) Partition of pollution between dissolved and particulate phases: what about emerging substances in urban stormwater catchments? Water Res 45:913–925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank OTHU (Field Observatory in Urban Hydrology) of ZABR (Zone Atelier Bassin du Rhône) for technical support. Thanks are expressed to all BPOE team members who helped with the bacterial platings, and to Nolwenn Aliot for her useful cases of advice on the use of certain statistical tests. We thank Carolina Gonzalez-Merchan for her collaboration with sediment sampling, and Nicolas Walcker for hydrological data sets recovery and management.

Funding

This study received financial support from the Labex IMU (Projects IMU-MIC, IMU-Patho-Air), the PEPS-CNRS (Patho-BRD), and ANR CABRRES and technical and financial support from the Grand Lyon Metropolis and Rhône-Mediterranean-Corsica Water Agency.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Didier Blaha.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

ESM 1

(DOCX 61.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernardin-Souibgui, C., Barraud, S., Bourgeois, E. et al. Incidence of hydrological, chemical, and physical constraints on bacterial pathogens, Nocardia cells, and fecal indicator bacteria trapped in an urban stormwater detention basin in Chassieu, France. Environ Sci Pollut Res 25, 24860–24881 (2018). https://doi.org/10.1007/s11356-018-1994-2

Download citation

Keywords

  • Micropollutants
  • Nocardia
  • Pseudomonas aeruginosa
  • Aeromonas caviae
  • Fecal indicator bacteria
  • Sediments