Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 25, pp 24860–24881 | Cite as

Incidence of hydrological, chemical, and physical constraints on bacterial pathogens, Nocardia cells, and fecal indicator bacteria trapped in an urban stormwater detention basin in Chassieu, France

  • Claire Bernardin-Souibgui
  • Sylvie Barraud
  • Emilie Bourgeois
  • Jean-Baptiste Aubin
  • Celine Becouze-Lareure
  • Laure Wiest
  • Laurence Marjolet
  • Celine Colinon
  • Ghislain Lipeme Kouyi
  • Benoit Cournoyer
  • Didier Blaha
Research Article

Abstract

The nature and fate of urban contaminants washed by stormwater events and accumulating in a detention basin (DB) were investigated. Relations between bacterial and chemical contaminants of trapped urban sediments, and field parameters were analyzed. Fecal indicators and some pathogens known to be environmentally transmitted (Nocardia, Pseudomonas aeruginosa, and Aeromonas caviae) were tracked, and their persistence investigated. Six sampling campaigns were carried out over 3 years, using five sites including a settling chamber (SC). Aerosolized bacteria at these sites were also monitored. Deposits in the basin were made of fine particles and their content in chemical pollutants was found highly variable. High polycyclic aromatic hydrocarbon (PAH) contents were measured but only three pesticides, over 22, were detected. Deposits were significantly contaminated by fecal indicator bacteria (FIB), P. aeruginosa, A. caviae, and by Nocardia. Only A. caviae showed significant numbers in aerosolized particles recovered over the detention basin. Nocardia spp. cells heavily contaminated the SC. The efficacy of the detention basin at reducing bacterial counts per rain event and over time were estimated. A slight drop in the counts was monitored for fecal indicators but not for the other bacterial groups. Hydrodynamic parameters had a strong impact on the distribution and features of the deposits. Multiple factors impacted the fate of FIB, P. aeruginosa, A. caviae, and Nocardia cells, but in a group dependent manner. Nocardia counts were found positively correlated with volatile organic matter. FIB appeared highly efficient colonizers of the DB.

Keywords

Micropollutants Nocardia Pseudomonas aeruginosa Aeromonas caviae Fecal indicator bacteria Sediments 

Notes

Acknowledgements

The authors thank OTHU (Field Observatory in Urban Hydrology) of ZABR (Zone Atelier Bassin du Rhône) for technical support. Thanks are expressed to all BPOE team members who helped with the bacterial platings, and to Nolwenn Aliot for her useful cases of advice on the use of certain statistical tests. We thank Carolina Gonzalez-Merchan for her collaboration with sediment sampling, and Nicolas Walcker for hydrological data sets recovery and management.

Funding information

This study received financial support from the Labex IMU (Projects IMU-MIC, IMU-Patho-Air), the PEPS-CNRS (Patho-BRD), and ANR CABRRES and technical and financial support from the Grand Lyon Metropolis and Rhône-Mediterranean-Corsica Water Agency.

Supplementary material

11356_2018_1994_MOESM1_ESM.docx (62 kb)
ESM 1 (DOCX 61.6 kb)

References

  1. Al-Bader D, Eliyas M, Rayan R, Radwan S (2012) Air–dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation. Environ Sci Pollut Res 19:3997–4005CrossRefGoogle Scholar
  2. Al-Rubaei AM, Engström M, Viklander M, Blecken G-T (2016) Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland—finally maturated or in need of maintenance? Ecol Eng 95:73–82CrossRefGoogle Scholar
  3. Araoju RM, Arribas RM, Pares R (1991) Distribution of Aeromonas species in waters with different level of pollution. J Appl Bacteriol 71:182–186CrossRefGoogle Scholar
  4. Barraud S, Gibert J, Winiarski T, Bertrand Krajewski J-L (2002) Implementation of a monitoring system to measure impact of stormwater runoff infiltration. Water Science & Technology 45(3): 203–210Google Scholar
  5. Barrek S, Cren-olivé C, Wiest L, Baudot R, Arnaudghilem C, Grenier-Loustalot M-F (2008) Multi-residue analysis and ultra-trace quantification of 36 priority substances from the European Water Framework Directive by GC – MS and LC-FLD-MS / MS in surface waters. Talanta 79:712–722CrossRefGoogle Scholar
  6. Becouze C, Wiest L, Baudot R, Bertrand-Krajewski J-L, Cren-Olive C (2011) Optimisation of pressurised liquid extraction for the ultra-trace quantification of 20 priority substances from the European Water Framework Directive in atmospheric particles by GC-MS and LC-FLD-MS/MS. Anal Chim Acta 693:47–53CrossRefGoogle Scholar
  7. Becouze-Lareure C (2010) Caractérisation et estimation des flux de substances prioritaires dans les rejets urbains par temps de pluie sur deux bassins versants expérimentaux. PhD, INSA of Lyon, Villeurbanne (in French)Google Scholar
  8. Bertrand-Krajewski J-L, Barraud S, Gibert J, Malard F, Winiarski T, Delolme C (2008) The OTHU case study: integrated monitoring of stormwater in Lyon, France. In T. Fletcher & A. Deletic, (ed) Data requirements for integrated urban water management, Leiden, Taylor & Francis, UNESCO, Paris, pp303–314Google Scholar
  9. Birch GF, Fazeli MS, Matthai C (2005) Efficiency of an infiltration basin in removing contaminants from urban stormwater. Environmental Monitoring Assessment 101(1–3):23–38Google Scholar
  10. Bressy A, Gromaire M-C, Lorgeroux C, Saad M, Leroy F, Chebbo G (2014) Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation. Water Res 57:234–246CrossRefGoogle Scholar
  11. Chocat B, Bertrand-Krajewski J-L, Barraud S (2007) Les eaux pluviales urbaines et les rejets urbains de temps de pluie. In T.I (ed) Les techniques de l’Ingénieur. Doc W6800, Saint Denis, (in French)Google Scholar
  12. Durand C (2003) Caractérisation physico-chimique des produits de l’assainissement pluvial. Origine et devenir des métaux traces et des polluants organiques. PhD, University of Poitiers, France (in French)Google Scholar
  13. Durand C, Ruban V, Amblès A, Oudot J (2004) Characterisation of the organic matter of sludge: determination of lipids, hydrocarbons and PAHs from road retention /infiltration ponds in France. Environ Pollut 132(3):375–384CrossRefGoogle Scholar
  14. Durand C, Ruban V, Amblès A (2005) Characterisation of complex organic matter present in contaminated sediments from water retention ponds. J Anal Appl Pyrolysis 73(1):17–28CrossRefGoogle Scholar
  15. EC (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. JO-EU L 226, 1–17Google Scholar
  16. Ellis B, Marsalek J & Chocat B (2005) Urban water quality. In M G Anderson, John Wiley & sons (ed) Encyclopedia of hydrological science, 8:97, pp1373–1386Google Scholar
  17. El-Mufleh A, Béchet B, Ruban V, Legret M, Clozel B, Barraud S, Gonzalez-Merchan C, Bedell J-P, Delolme C (2014) Physical and chemical characterizations of contaminated sediments from two urban stormwater infiltration basins—a synthesis of two decades of works and recommendations for sediment management in the framework of the French observatory for urban hydrology (SOERE URBIS). Environ Sci Pollut Res 21(8):5329–5346CrossRefGoogle Scholar
  18. Flahaut S, Auffray Y, Boutibonnes P (1997) Les entérocoques dans l’environnement proche de l’homme. Can J Microbiol 43(8):699–708CrossRefGoogle Scholar
  19. Gasperi J, Sébastian C, Ruban V, Delamain M, Percot S, Wiest L, Mirande C, Caupos E, Demare D, Diallo Kessoo M, Saad M, Schwartz J-J, Dubois P, Fratta C, Wolff H, Moilleron R, Chebbo G, Cren C, Millet M, Barraud S, Gromaire M-C (2014) Micropollutants in urban stormwater: occurrence, concentrations and atmospheric contribution for a wide range of contaminants on three French catchments. Environ Sci Pollut Res 21(8):5267–5281CrossRefGoogle Scholar
  20. Górny RL, Dutkiewicz J, Krysińska-Traczyk E (1999) Size distribution of bacterial and fungal bioaerosols in indoor air. Annals of Agricultural and Environmental Medicine 6(2):105–113Google Scholar
  21. Gourmelon M, Caprais MP, Kay D, Stapleton C (2010) Techniques de dépistage des sources de pollution microbiennes - Méthodologies, application et retour d’expériences en France et au Royaume-Uni. Technique Science Méthode 4:54–64CrossRefGoogle Scholar
  22. Gy PM (2004) Sampling of discrete materials—a new introduction to the theory of sampling. Chemom Intell Lab Syst 74:7–24Google Scholar
  23. Hirai Y (1991) Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J Hosp Infect 19(3):191–200CrossRefGoogle Scholar
  24. Jacopin C, Bertrand-Krajewski JL, Desbordes M (1999) Characterisation and settling of solids in an open, grassed, stormwater sewer network detention basin. Water Sci Technol 39(2):135–144CrossRefGoogle Scholar
  25. Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212Google Scholar
  26. Laurent FJ, Provost F, Boiron P (1999) Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J Clin Microbiol 37(1):99–102Google Scholar
  27. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 70(1):20–29CrossRefGoogle Scholar
  28. Le TN-C, Mikolasch A, Awe S, Sheikhany H, Klenk H-P, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50(3):241–253CrossRefGoogle Scholar
  29. Legret M, Le Marc C, Demare D, Colandini V (1995) Heavy metals contamination in a decantation basin receiving road runoff. Environ Technol 16:1049–1060CrossRefGoogle Scholar
  30. Leys NM, Bastiaens L, Verstraete W, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Applied Microbiology Biotechnology 66(6):726–736CrossRefGoogle Scholar
  31. Li Y, Deletic A, Fletcher TD (2007) Modelling wet weather sediment removal by stormwater constructed wetlands: insights from a laboratory study. J Hydrol 338:285–296CrossRefGoogle Scholar
  32. Marti R, Bécouze-Lareure C, Ribun S, Marjolet L, Bernardin -Souibgui C, Aubin J-B, Lipeme Kouyi G, Wiest L, Blaha D, Cournoyer B (2017) Bacteriome genetic structures of urban deposits mobilized by runoffs are impacted by chemical pollutants and indicative of their origin. Sc. Report 7:13219Google Scholar
  33. Martin-Carnahan A, Joseph SW (2005) Aeromonadales ord. nov. In: Brenner DJ, Krieg NR, Staley JT et al (eds) Bergey’s manual® of systematic bacteriology. Springer US, pp 556–587CrossRefGoogle Scholar
  34. Monfort P, Baleux B (1990) Dynamics of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae in a sewage treatment pond. Applied Environmental Microbiology 56(7):1999–2006Google Scholar
  35. NMHSPE (2000) Circular on target values and intervention values for soil remediation. The Netherlands Ministry of Housing, Spatial Planning and the Environment. p 51. available at https://www.esdat.net/Environmental Standards/Dutch/annexS_I2000Dutch Environmental Standards.pdf. Accessed 19 Apr 2017
  36. Pétavy F (2007) Traitement et valorisation des sédiments de l’assainissement pluvial. PhD, Ecole central of Nantes and University of Nantes, France. (in French)Google Scholar
  37. Pétavy F, Ruban V, Conil P (2009) Treatment of stormwater sediments: efficiency of an attrition scrubber—laboratory and pilot-scale studies. Chem Eng J 145(3):475–482CrossRefGoogle Scholar
  38. Petit (2012) Écologie et dangerosité des Pseudomonas aeruginosa des milieux aquatiques anthropisés. PhD. University of Lyon 1, Villeurbanne (in French)Google Scholar
  39. Pitt R, Clark S, Parmer K. (1994) Potential groundwater contamination from intentional and non intentional stormwater infiltration. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-94/051 pp187Google Scholar
  40. Prusty BAK, Chandra R, Azeez PA (2009) Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitat system in India. Aust J Soil Res 47(2):177CrossRefGoogle Scholar
  41. Reynolds TL, Barnes HJ, Wolfe B, Lu L, Camp DM, Malarkey DE (2009) Bilateral nocardial endophthalmitis in a prothonotary warbler (Protonotaria citrea). Vet Pathol 1:120–123CrossRefGoogle Scholar
  42. Rossi L (1998) Qualité des eaux de ruissellement urbaines. PhD, Ecole Polytechnique Fédérale de Lausanne, Suisse (in French)Google Scholar
  43. Ruban V, Larrarte F, Berthier M, Favreau L, Sauvourel Y, Letellier L, Mosini M, Raimbault G (2005) Quantitative and qualitative hydrologic balance for a suburban watershed with a separate sewer system (Nantes, France). Water Sci Technol 51(2):231–238CrossRefGoogle Scholar
  44. Sansalone JJ, Buchberger SG (1997) Characterization of solid and metal element distributions in urban highway stormwater. Water Sci Technol 36(8–9):155–160CrossRefGoogle Scholar
  45. Sébastian C (2013) Bassin de retenue des eaux pluviales en milieu urbain : performance en matière de piégeage des micropolluants. PhD.,INSA of Lyon, France (in French)Google Scholar
  46. Sébastian C, Ruban V, Moilleron R, Barraud S, Chebbo G, Gromaire M-C, Lorgeoux C, Gasperi J, Cren C, Wiest L, Demare D, Millet M, Saad M, Percot S, Maro D (2011) INOGEV project—an original French approach in micropollutant characterization assessment in urban wet weather effluents and atmospheric deposits. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil, 10–15 September 2011 - pp 8Google Scholar
  47. Sébastian C, Barraud S, Becouze-Lareure C, Gonzalez-Merchan C, Lipeme Kouyi G, Gibello C (2013) Accumulated sediments in a large dry stormwater retention-detention basin: physico-chemical spatial characterization and evolution - Estimation of metals, pesticides, PAHs and Alkylphenols contents. 8th international conference NOVATECH, 23-27 June 2013, Lyon, pp 10Google Scholar
  48. Sébastian C, Barraud S, Ribun S, Zoropogui A, Blaha D, Becouze-Lareure C, Lipeme Kouyi G, Cournoyer B (2014) Accumulated sediments in a detention basin: chemical and microbial hazards assessment linked to hydrological processes. Environ Sci Pollut Res 21(8):5367–5378CrossRefGoogle Scholar
  49. Sébastian C, Becouze-Lareure C, Lipeme Kouyi G, Barraud S (2015) Event-based quantification of emerging pollutant removal for an open stormwater retention basin—loads, efficiency and importance of uncertainties. Water Res 72(1):239–250CrossRefGoogle Scholar
  50. Silkeborg municipality (2009) Task E, 5th delivery: Final report on the environmental and technical performance of the treatment unit process. TREASURE LIFE06 ENV/DK/000229. http://www.life-treasure.com/PublicFiles/Final_report_environmental_technical.pdf. Accessed 15juin 2015
  51. Silva CM, Evangelista-Barreto NS, Vieira RHSDF, Mendonça KV, de Sousa OV (2014) Population dynamics and antimicrobial susceptibility of Aeromonas spp. along a salinity gradient in an urban estuary in Northeastern Brazil. Mar Pollut Bull 89(1–2):96–101CrossRefGoogle Scholar
  52. Sun S, Barraud S, Castebrunet H, Aubin J-B, Marmonier P (2015) Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment. Water Res 85:432–442CrossRefGoogle Scholar
  53. Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 7:1395.  https://doi.org/10.3389/fmicb.2016.01395 CrossRefGoogle Scholar
  54. Thompson LJ, Gray V, Lindsay D, von Holy A (2006) Carbon: nitrogen: phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. J Appl Microbiol 101(5):1105–1113CrossRefGoogle Scholar
  55. Torres A (2008) Décantation des eaux pluviales dans un ouvrage réel de grande taille : éléments de réflexion pour le suivi et la modélisation. PhD, INSA of Lyon, France (in French)Google Scholar
  56. Ukpaka CP, Orji C, Orji AG (2014) The influence of chemical and biochemical oxygen demands on the kinetics of crude oil degradation in salt water pond. Sky Journal of Biochemistry Research 3(1):001–013Google Scholar
  57. Urbonas B (1994) Assessment of stormwater BMPs and their technology. Water Sci Technol 29(1–2):347–353CrossRefGoogle Scholar
  58. Weinstein JE, Crawford KD, Garner TR, Flemming AJ (2010) Screening-level ecological, and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA. J Hazard Mater 178:906–9016CrossRefGoogle Scholar
  59. Wilson JW (2012) Nocardiosis: updates and clinical overview. Mayo Clin Proc 87(4):403–407CrossRefGoogle Scholar
  60. Xu J, Liu H, Liu J, Liang R (2015) Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil. Acta Micobiologica Sinica 55(6):755–763Google Scholar
  61. Yan H, Lipeme Kouyi G, Gonzalez-Merchan C, Becouze-Lareure C, Sébastian C, Barraud S, Bertrand- Krajewski J-L (2014) Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin. Environmental Science Pollution Research 21(8):5347–5356CrossRefGoogle Scholar
  62. Zgheib S, Moilleron R, Saad M, Chebbo G (2011) Partition of pollution between dissolved and particulate phases: what about emerging substances in urban stormwater catchments? Water Res 45:913–925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Claire Bernardin-Souibgui
    • 1
    • 2
  • Sylvie Barraud
    • 1
    • 3
  • Emilie Bourgeois
    • 1
    • 2
  • Jean-Baptiste Aubin
    • 1
    • 3
    • 4
  • Celine Becouze-Lareure
    • 1
    • 3
  • Laure Wiest
    • 5
  • Laurence Marjolet
    • 1
    • 2
  • Celine Colinon
    • 1
    • 2
  • Ghislain Lipeme Kouyi
    • 1
    • 3
  • Benoit Cournoyer
    • 1
    • 2
  • Didier Blaha
    • 1
    • 2
  1. 1.Université de LyonLyonFrance
  2. 2.UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on “Bacterial Opportunistic Pathogens and Environment”Université Lyon ILyonFrance
  3. 3.DEEPINSA LyonVilleurbanne cedexFrance
  4. 4.Institut Camille-Jordan UMR CNRS 5208INSA Lyon - Bâtiment Léonard de VinciVilleurbanne cedexFrance
  5. 5.Institut des Sciences Analytiques, CNRS 5280Université Lyon 1, ENS LyonVilleurbanneFrance

Personalised recommendations