Environmental Science and Pollution Research

, Volume 25, Issue 18, pp 17553–17564 | Cite as

Enhanced TiO2 nanorods photocatalysts with partially reduced graphene oxide for degrading aqueous hazardous pollutants

  • Tao Peng
  • Jian Zhang
  • Srimanta Ray
  • Houssam Fakhouri
  • Xu Xu
  • Farzaneh Arefi-Khonsari
  • Jerald A. Lalman
Research Article


Enhanced TiO2 nanorods (TNRs) with partially reduced graphene oxide (RGO) (designated as GT) were prepared for degrading aqueous hazardous pollutants. The degree of RGO oxidation had an important role in affecting the photoelectronic and photocatalytic activities of GT composites. The study examined the impact of the degree of RGO oxidation on the photocatalytic activities. The photocatalytic activity of the materials was investigated for degrading rhodamine b (RhB), methyl orange (MO), methylene blue (MB), and phenol by using ultraviolet (UV) light. The highest photocatalytic activity was observed when the atomic oxygen-to-carbon (O/C) ratio of RGO was 0.130 ± 0.003. This study suggested the photocatalytic performance was maximized by preserving a selected amount of the RGO oxygen-containing groups. The work reported in this study on optimizing the RGO-based TiO2 photocatalyst could serve as a promising approach for preparing and optimizing other types of carbon-based photocatalysts such as graphene-based CdS.


TiO2 photocatalysts Graphene Functionalization Deoxidization Photo-electrochemical Reduced graphene oxide 


Funding information

Financial support for this work was provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 261797-2009), the Ontario Trillium Foundation, and the University of Windsor (Grant No. 13320).

Supplementary material

11356_2018_1886_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1.79 mb)


  1. Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166CrossRefGoogle Scholar
  2. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220. CrossRefGoogle Scholar
  3. Akhavan O, Ghaderi G (2013) Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nano 2013(5):10316–10326Google Scholar
  4. Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114(30):12955–12959. CrossRefGoogle Scholar
  5. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. CrossRefGoogle Scholar
  6. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3378. CrossRefGoogle Scholar
  7. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470CrossRefGoogle Scholar
  8. Bell NJ, Ng YH, Du A et al (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009. CrossRefGoogle Scholar
  9. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501–1246501. CrossRefGoogle Scholar
  10. Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701. CrossRefGoogle Scholar
  11. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y (2010) Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4:6425–6432. CrossRefGoogle Scholar
  12. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428. CrossRefGoogle Scholar
  13. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. CrossRefGoogle Scholar
  14. Chun K-Y, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857. CrossRefGoogle Scholar
  15. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. CrossRefGoogle Scholar
  16. Du J, Lai X, Yang N et al (2011) Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596. CrossRefGoogle Scholar
  17. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. CrossRefGoogle Scholar
  18. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404. CrossRefGoogle Scholar
  19. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. CrossRefGoogle Scholar
  20. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. CrossRefGoogle Scholar
  21. He D, Cheng K, Peng T, Sun X, Pan M, Mu S (2012) Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability. J Mater Chem 22:21298–21297. CrossRefGoogle Scholar
  22. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163. CrossRefGoogle Scholar
  23. Kim Y-K, Min D-H (2013) UV protection of reduced graphene oxide films by TiO2 nanoparticle incorporation. Nano 5:3638–3635. Google Scholar
  24. Kim G-S, Seo H-K, Godble VP, Kim YS, Yang OB, Shin HS (2006) Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem Commun 8:961–966CrossRefGoogle Scholar
  25. Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41. CrossRefGoogle Scholar
  26. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. CrossRefGoogle Scholar
  27. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088. CrossRefGoogle Scholar
  28. Li J-G, Ishigaki T, Sun X (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111:4969–4976. CrossRefGoogle Scholar
  29. Li X, Yu J, Wageh S, al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640–6696. CrossRefGoogle Scholar
  30. Liang YT, Vijayan BK, Lyandres O, Gray KA, Hersam MC (2012) Effect of dimensionality on the photocatalytic behavior of carbon–titania nanosheet composites: charge transfer at nanomaterial interfaces. J Phys Chem Lett 3:1760–1765. CrossRefGoogle Scholar
  31. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008a) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8:1965–1970. CrossRefGoogle Scholar
  32. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008b) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8:1965–1970. CrossRefGoogle Scholar
  33. Long R, English NJ, Prezhdo OV (2012) Photo-induced charge separation across the graphene–TiO2 interface is faster than energy losses: a time-domain ab initio analysis. J Am Chem Soc 134:14238–14248. CrossRefGoogle Scholar
  34. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7. CrossRefGoogle Scholar
  35. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. CrossRefGoogle Scholar
  36. Matos J, Montaña R, Rivero E (2014) Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–vis irradiation. Environ Sci Pollut Res 22:784–791. CrossRefGoogle Scholar
  37. Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063. CrossRefGoogle Scholar
  38. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 162:33–34. Google Scholar
  39. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. CrossRefGoogle Scholar
  40. Novoselov KS, ko VIF, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200. CrossRefGoogle Scholar
  41. Oseghe EO, Ndungu PG, Jonnalagadda SB (2015) Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems. Environ Sci Pollut Res 22:211–222. CrossRefGoogle Scholar
  42. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228. CrossRefGoogle Scholar
  43. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. CrossRefGoogle Scholar
  44. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956. CrossRefGoogle Scholar
  45. Ray S, Lalman JA, Biswas N (2009) Using the Box-Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles. Chem Eng J 150:15–24. CrossRefGoogle Scholar
  46. Ren P-G, Yan D-X, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22(5):055705. CrossRefGoogle Scholar
  47. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME et al (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605. CrossRefGoogle Scholar
  48. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939. CrossRefGoogle Scholar
  49. Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 7:2532–2540. CrossRefGoogle Scholar
  50. Sajan CP, Wageh S, Al-Ghamdi AA et al (2016) TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res 9:3–27. CrossRefGoogle Scholar
  51. Shen L, Zhang X, Li H, Yuan C, Cao G (2011) Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett 2:3096–3101. CrossRefGoogle Scholar
  52. Singh N, Rana MS, Gupta RK (2017) Modelling studies for photocatalytic degradation of organic dyes using TiO2 nanofibers. Environ Sci Pollut Res.
  53. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. CrossRefGoogle Scholar
  54. Tahir SF, Koh CA (1996) Catalytic oxidation for air pollution control. Environ Sci Pollut Res 3:20–23. CrossRefGoogle Scholar
  55. Tuinstra F (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1126. CrossRefGoogle Scholar
  56. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914. CrossRefGoogle Scholar
  57. Wang P, Han L, Zhu C, Zhai Y, Dong S (2011) Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res 4:1153–1162. CrossRefGoogle Scholar
  58. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. CrossRefGoogle Scholar
  59. Wu Q, Zhao H, Huang F, Hou J, Cao H, Liu Z, Peng S, Cao G (2017) Impacts of reduced graphene oxide in CdS/CdSe quantum dots co-sensitized solar cells. J Phys Chem C 121:18430–18438. CrossRefGoogle Scholar
  60. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nano 3(9):3670–3678. Google Scholar
  61. Xu D, Cheng B, Cao S, Yu J (2015) Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B 164:380–388. CrossRefGoogle Scholar
  62. Yang D, Sun Y, Tong Z, Tian Y, Li Y, Jiang Z (2015) Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J Phys Chem C 119:5827–5835. CrossRefGoogle Scholar
  63. Zawacki BE, Azen SP, Imbus SH, Chang YT (1979) Multifactorial probit analysis of mortality in burned patients. Ann Surg 189:1–5CrossRefGoogle Scholar
  64. Zhang H, Lv X, Li Y, Wang Y, Li J (2010a) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. CrossRefGoogle Scholar
  65. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010b) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806. CrossRefGoogle Scholar
  66. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010c) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314. CrossRefGoogle Scholar
  67. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tao Peng
    • 1
    • 2
  • Jian Zhang
    • 3
  • Srimanta Ray
    • 4
  • Houssam Fakhouri
    • 2
  • Xu Xu
    • 5
  • Farzaneh Arefi-Khonsari
    • 2
  • Jerald A. Lalman
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of WindsorWindsorCanada
  2. 2.Laboratoire Interfaces et Systèmes Electrochimiques, LISE, CNRSSorbonne UniversitéParisFrance
  3. 3.State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  4. 4.Department of Chemical EngineeringNational Institute of Technology AgartalaAgartalaIndia
  5. 5.Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations