Environmental Science and Pollution Research

, Volume 25, Issue 18, pp 17529–17539 | Cite as

Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization

  • Sabzoi Nizamuddin
  • Muhammad Tahir Hussain Siddiqui
  • Humair Ahmed Baloch
  • Nabisab Mujawar Mubarak
  • Gregory Griffin
  • Srinivasan Madapusi
  • Akshat Tanksale
Research Article


The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar. Maximum hydrochar yield of 62.8% was obtained at 1000 W, 220 °C, and 5 min. The higher heating value (HHV) was improved significantly from 6.80 MJ/kg of rice husk to 16.10 MJ/kg of hydrochar. Elemental analysis results showed that the carbon content increased and oxygen content decreased in hydrochar from 25.9 to 47.2% and 68.5 to 47.0%, respectively, improving the energy and combustion properties. SEM analysis exhibited modification in structure of rice husk and improvement in porosity after MHTC, which was further confirmed from BET surface analysis. The BET surface area increased from 25.0656 m2/g (rice husk) to 92.6832 m2/g (hydrochar). Thermal stability of hydrochar was improved from 340 °C for rice husk to 370 °C for hydrochar.


Rice husk Microwave processing Hydrothermal carbonization Hydrochar 


  1. Afolabi OO, Sohail M, Thomas C (2015) Microwave hydrothermal carbonization of human biowastes. Waste Biomass Valoriz 6:147–157CrossRefGoogle Scholar
  2. Afolabi OO, Sohail M, Thomas C (2017) Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste. Energy 134:74–89CrossRefGoogle Scholar
  3. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energ Rev 15:1615–1624CrossRefGoogle Scholar
  4. Asadieraghi M, Wan Daud WMA (2014) Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag 82:71–82CrossRefGoogle Scholar
  5. Bhutto AW, Bazmi AA, Zahedi G (2011) Greener energy: issues and challenges for Pakistan—biomass energy prospective. Renew Sust Energ Rev 15:3207–3219CrossRefGoogle Scholar
  6. Bhutto AW, Qureshi K, Abro R, Harijan K, Zhao Z, Bazmi AA, Abbas T, Yu G (2016) Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector–prospects and challenges. RSC Adv 6:32140–32170CrossRefGoogle Scholar
  7. Chen W-H, Ye S-C, Sheen H-K (2012a) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118:195–203CrossRefGoogle Scholar
  8. Chen Y, Yang H, Wang X, Zhang S, Chen H (2012b) Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour Technol 107:411–418CrossRefGoogle Scholar
  9. Chen WY, Mattern DL, Okinedo E, Senter JC, Mattei AA, Redwine CW (2014) Photochemical and acoustic interactions of biochar with CO2 and H2O: applications in power generation and CO2 capture. AICHE J 60:1054–1065CrossRefGoogle Scholar
  10. Chowdhury Z, Hamid SA, Rahman MM, Rafique RF (2016) Catalytic activation and application of micro-spherical carbon derived from hydrothermal carbonization of lignocellulosic biomass: statistical analysis using Box–Behnken design. RSC Adv 6:102680–102694CrossRefGoogle Scholar
  11. Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42:183–188CrossRefGoogle Scholar
  12. Di Blasi C, Signorelli G, Di Russo C, Rea G (1999) Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res 38:2216–2224CrossRefGoogle Scholar
  13. Du Y, Schuur B, Samorì C, Tagliavini E, Brilman DWF (2013) Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresour Technol 149:253–260CrossRefGoogle Scholar
  14. Elaigwu SE, Greenway GM (2016a) Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties. Fuel Process Technol 149:305–312CrossRefGoogle Scholar
  15. Elaigwu SE, Greenway GM (2016b) Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. J Anal Appl Pyrolysis 118:1–8CrossRefGoogle Scholar
  16. Elaigwu SE, Greenway GM (2016c) Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose. Int J Ind Chem 7:449–456CrossRefGoogle Scholar
  17. Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383CrossRefGoogle Scholar
  18. Guiotoku M, Rambo C, Hansel F, Magalhaes W, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63:2707–2709CrossRefGoogle Scholar
  19. Guo S, Dong X, Wu T, Zhu C (2016) Influence of reaction conditions and feedstock on hydrochar properties. Energy Convers Manag 123:95–103CrossRefGoogle Scholar
  20. Guo L, Hu Y, Wu L, Liang C, Zhang W (2017) The green hydrolysis technology of hemicellulose in corncob by the repeated use of hydrolysate. Chin J Chem EngGoogle Scholar
  21. Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L (2013) Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conv Biorefin 3:113–126CrossRefGoogle Scholar
  22. Hossain MA, Jewaratnam J, Ganesan P, Sahu J, Ramesh S, Poh S (2016) Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation. Energy Convers Manag 115:232–243CrossRefGoogle Scholar
  23. Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24:725–735CrossRefGoogle Scholar
  24. Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2017) Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin J Chem EngGoogle Scholar
  25. Jamari SS, Howse JR (2012) The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenergy 47:82–90CrossRefGoogle Scholar
  26. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031CrossRefGoogle Scholar
  27. Kannan S, Gariepy Y, Raghavan GV (2017a) Optimization and characterization of hydrochar derived from shrimp waste. Energy Fuel 31:4068–4077CrossRefGoogle Scholar
  28. Kannan S, Gariepy Y, Raghavan GV (2017b) Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Manag 65:159–168CrossRefGoogle Scholar
  29. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28:190–198CrossRefGoogle Scholar
  30. Li M-F, Shen Y, Sun J-K, Bian J, Chen C-Z, Sun R-C (2015) Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain Chem Eng 3:2022–2029CrossRefGoogle Scholar
  31. Lin L, Zhai S-R, Xiao Z-Y, Song Y, An Q-D, Song X-W (2013) Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour Technol 136:437–443CrossRefGoogle Scholar
  32. Lin H, Wang S, Zhang L, Ru B, Zhou J, Luo Z (2017) Structural evolution of chars from biomass components pyrolysis in a xenon lamp radiation reactor. Chin J Chem Eng 25:232–237CrossRefGoogle Scholar
  33. Liu Y, X-z Y, H-j H, X-l W, Wang H, G-m Z (2013) Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Process Technol 112:93–99CrossRefGoogle Scholar
  34. Liu F, Yu R, Guo M (2017) Hydrothermal carbonization of forestry residues: influence of reaction temperature on holocellulose-derived hydrochar properties. J Mater Sci 52:1736–1746CrossRefGoogle Scholar
  35. Lua AC, Yang T (2004) Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J Colloid Interface Sci 276:364–372CrossRefGoogle Scholar
  36. Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, De Castro AM, Driemeier CE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46:1196–1201CrossRefGoogle Scholar
  37. Manyà JJ, Ruiz J, Arauzo J (2007) Some peculiarities of conventional pyrolysis of several agricultural residues in a packed bed reactor. Ind Eng Chem Res 46:9061–9070CrossRefGoogle Scholar
  38. Marx S, Chiyanzu I, Piyo N (2014) Influence of reaction atmosphere and solvent on biochar yield and characteristics. Bioresour Technol 164:177–183CrossRefGoogle Scholar
  39. Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2017) Hydrothermal carbonization of unwanted biomass materials: effect of process temperature and retention time on hydrochar and liquid fraction. J Energy InstGoogle Scholar
  40. Nizamuddin S, Mubarak N, Tiripathi M, Jayakumar N, Sahu J, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97CrossRefGoogle Scholar
  41. Pang J, Zheng M, Wang A, Sun R, Wang H, Jiang Y, Zhang T (2014) Catalytic conversion of concentrated miscanthus in water for ethylene glycol production. AICHE J 60:2254–2262CrossRefGoogle Scholar
  42. Renmin W, Chan L, Jingliang L, Fang Y, Jianpei G, Xuejun P (2012) Pressured microwave-assisted hydrolysis of crude glycyrrhizic acid for preparation of glycyrrhetinic acid. Chin J Chem Eng 20:152–157CrossRefGoogle Scholar
  43. Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63CrossRefGoogle Scholar
  44. Román S, Nabais J, Laginhas C, Ledesma B, González J (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83CrossRefGoogle Scholar
  45. Sinan N, Unur E (2017) Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J Energy ChemGoogle Scholar
  46. Tripathi M, Sahu J, Ganesan P, Jewaratnam J (2016) Thermophysical characterization of oil palm shell (OPS) and OPS char synthesized by the microwave pyrolysis of OPS. Appl Therm Eng 105:605–612CrossRefGoogle Scholar
  47. Uras U (2011) Biochar from vacuum pyrolysis of agricultural residues: characterisation and its applications. Stellenbosch University, StellenboschGoogle Scholar
  48. Uzun BB, Apaydin-Varol E, Ateş F, Özbay N, Pütün AE (2010) Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel 89:176–184CrossRefGoogle Scholar
  49. Várhegyi G, Szabó P, Till F, Zelei B, Antal MJ, Dai X (1998) TG, TG-MS, and FTIR characterization of high-yield biomass charcoals. Energy Fuel 12:969–974CrossRefGoogle Scholar
  50. Wang L, Guo Y, Zhu Y, Li Y, Qu Y, Rong C, Ma X, Wang Z (2010) A new route for preparation of hydrochars from rice husk. Bioresour Technol 101:9807–9810CrossRefGoogle Scholar
  51. Zhang L, Wang Q, Wang B, Yang G, Lucia LA, Chen J (2015) Hydrothermal carbonization of corncob residues for hydrochar production. Energy Fuel 29:872–876CrossRefGoogle Scholar
  52. Zhang S, Chen T, Xiong Y, Dong Q (2017) Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk. Energy Convers Manag 141:403–409CrossRefGoogle Scholar
  53. Zhao P, Shen Y, Ge S, Yoshikawa K (2014) Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Convers Manag 78:815–821CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sabzoi Nizamuddin
    • 1
  • Muhammad Tahir Hussain Siddiqui
    • 1
  • Humair Ahmed Baloch
    • 1
  • Nabisab Mujawar Mubarak
    • 2
  • Gregory Griffin
    • 1
  • Srinivasan Madapusi
    • 1
  • Akshat Tanksale
    • 3
  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin UniversitySarawakMalaysia
  3. 3.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations