Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 18, pp 17444–17456 | Cite as

NaCl impact on Kosteletzkya pentacarpos seedlings simultaneously exposed to cadmium and zinc toxicities

  • Ming-Xi Zhou
  • Hélène Dailly
  • Marie-Eve Renard
  • Rui-Ming Han
  • Stanley Lutts
Research Article

Abstract

Data regarding NaCl impact on halophyte plant species exposed to a polymetallic contamination remain scarce. Seedlings of the salt marsh species Kosteletzkya pentacarpos were simultaneously exposed to cadmium (10 μM) and zinc (100 μM) in the absence or presence of 50 mM NaCl. Heavy metal exposure reduced plant growth and increased Cd and Zn concentrations in all organs. Cd and Zn accumulation reduced net photosynthesis in relation to stomatal closure, decreased in chlorophyll concentration and alteration in chlorophyll fluorescence-related parameters. Salinity reduced Cd and Zn bioaccumulation and translocation, with a higher impact on Cd than Zn. It mitigated the deleterious impact of heavy metals on photosynthetic parameters. NaCl reduced the heavy metal-induced oxidative stress assessed by malondialdehyde, carbonyl, and H2O2 concentration. Subcellular distribution revealed that Cd mainly accumulated in the cell walls, but NaCl increased it in the cytosol fraction in the leaf and in the metal-rich granule fraction in the roots. It had no impact on Zn subcellular distribution. The additional NaCl contributed to a higher sequestration of Cd on phytochelatins and stimulated glutathione synthesis. The positive impact of NaCl on K. pentacarpos response to polymetallic pollution made this species a promising candidate for revegetation of heavy metal-contaminated salt areas.

Keywords

Halophyte Heavy metal Cadmium Zinc Phytoremediation Salinity 

Notes

Acknowledgements

We thank Mrs. Brigitte Vanpee (UCL, Louvain-la-– Neuve) for the technical assistance, and the PhD student Jiachen Wang (KUL, Leuven) for the management of the experiment. Mingxi Zhou is grateful to the China Scholarship Council (CSC) for the award of a research fellowship.

Funding information

This study was partly supported by the National Natural Science Foundation of China (41403064, 41773081).

References

  1. Adams SM, Shorey CD, Byrne M (1997) An ultrastructural and microanalytical study of metal-ionn content in granular concretions of the freshwater mussel Hydriella depressa. Micron 28:1–11CrossRefGoogle Scholar
  2. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  3. Blits KC, Gallagher JL (1990) Salinity tolerance of Kosteletzkya virginica 1. Shoot growth, ion and water relations. Plant Cell Environ 13:409–418CrossRefGoogle Scholar
  4. Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Boget S, Parvaz P, Revol A (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chromatogr B Biomed Sci Appl 752:123–132CrossRefGoogle Scholar
  5. Cherif J, Derbel N, Nakkach M, vopn Bergmann H, Jemal F, Ben Lakhdar Z (2012) Spectroscopic studes of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity. J Photochem Photobiol B Biol 111:9–16CrossRefGoogle Scholar
  6. De Vos CR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858CrossRefGoogle Scholar
  7. El Nemr A, El-Said GF (2017) Assessment and ecological risk of heavy metals in sediment and molluscs from the Mediterranean coast. Water Environ Res 89:195–210CrossRefGoogle Scholar
  8. Ghabriche R, Ghanya T, Mnasri M, Zaier H, Baioui R, Vromman D, Abdelly C, Lutts S (2017) Polyamine and tyramine involvement in NaCl-induced improvement of Cd resistance in the halophyte Inula chritmoides L. J Plant Physiol 6:136–144CrossRefGoogle Scholar
  9. Ghanem ME, Han RM, Classen B, Leclerq J, Mahy G, Ruan CJ, Pérez-Alfcoea F, Lutts S (2010) Mucilages and polysaccharides in the halophyte plant species Kosteletzkya virginica (L.) Presl.: localization and composition in relation to salt-induced physiological modifications. J Plant Physiol 167:382–392CrossRefGoogle Scholar
  10. Halchak JL, Seliskar DM, Gallagher JL (2011) Root system architecture of Kosteletzkya pentacarpos (Malvaceae) and belowground environmental influences on root and aerial growth dynamics. Am J Bot 98:163–174CrossRefGoogle Scholar
  11. Han RM, Lefèvre I, Ruan CJ, Qin P, Lutts S (2012) NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul 68:97–109CrossRefGoogle Scholar
  12. Han RM, Quinet M, André E, Van Elteren J, Destrebecq F, Vogel-Mikus K, Cui G, Debeljak M, Lefèvre I, Lutts S (2013a) Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity. Planta 238:441–457CrossRefGoogle Scholar
  13. Han RM, Lefèvre I, Albacete A, Pérez-Alfocéa F, Baeba-Espín G, Díaz-Vivancos P, Quinet M, Ruan CJ, Hernández JA, Cantero-Navarro E, Lutts S (2013b) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368CrossRefGoogle Scholar
  14. Hazotte C, L ubie B, Rees F, Morel JL, Simonnot MO (2017) A novel process to recover cadmium and zinc from the hyperaccumulator plant Noccaea caerulescens. Hydrometallurgy 174:56–65CrossRefGoogle Scholar
  15. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. II. Role of electron transfer. Arch Biochem Biophys 125:850–857CrossRefGoogle Scholar
  16. Lefèvre I, Vogel-Mikuš K, Jeromel J, Vavpetič P, Planchon s AI, Van Elteren J, Lepoint G, Gobert S, Renaut J, Pelicon P, Lutts S (2014) Cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ 37:1299–1320CrossRefGoogle Scholar
  17. Lefèvre I, Vogel-Mikuš K, Arčon I, Lutts S (2016) How do roots of the metal resistant perenial bush Zygophyllum fabago cope with cadmium and zinc toxicities? Plant Soil 404:193–207CrossRefGoogle Scholar
  18. Li T, Yang X, Lu L, Islma E, He Z (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169:734–741CrossRefGoogle Scholar
  19. Li D, Zhou D, Wang P, Li L (2011) Temperature affects cadmium-induced phytotoxicity involved in subcellular cadmium distribution and oxidative stress in wheat roots. Ecotoxicol Environ Saf 74:2029–2035CrossRefGoogle Scholar
  20. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528CrossRefGoogle Scholar
  21. Lutts S, Qin P, Han RM (2016) Salinity influences biosorption of heavy metals by the root of the halophyte species Kosteletzkya pentacarpos. Ecol Eng 95:682–689CrossRefGoogle Scholar
  22. Mani D, Kumar C, Patel NK (2015) Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotoxicol Environ Saf 111:86–95CrossRefGoogle Scholar
  23. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  24. Nawaz I, Iqbal M, Bliek M, Schat H (2017) Salt and heavy metal tolerance and expression levels of candidate tolerance genes among four extremophile Cochlearia species with contrasting habitat preferences. Sci Total Environ 584-585:731–741CrossRefGoogle Scholar
  25. Ogundele LT, Owoade OK, Hopke PK, Olise FS (2017) Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environ Res 156:320–325CrossRefGoogle Scholar
  26. Pellegrini N, Re R, Yang M, Rice-Evans CA (1999) Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying the 2,2′-azobis(3-ethylenebenzothiazoline-6-sulfonic) acid radical cation decolorization assay. Methods Enzymol 299:379–389CrossRefGoogle Scholar
  27. Qin P, Han RM, Zhou MX, Zhang HS, Fan LS, Seliskar DM, Gallagher JL (2015) Ecological engineering through the biosecure introduction of Kosteletzkya virginica (seashore mallow) to saline lands in China: a review of 20 years of activity. Ecol Eng 74:174–186CrossRefGoogle Scholar
  28. Qiu RL, Thangavel P, Hu PJ, Senthilkumar P, Ying RR, Tang YT (2011) Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater 186:1425–1430CrossRefGoogle Scholar
  29. Redondo-Gomez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R, Valera-Burgos J, Aroca R (2011) Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora. J Exp Bot 62:5521–5530CrossRefGoogle Scholar
  30. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefGoogle Scholar
  31. Różański S, Jaworska H, Matuszczak K, Nowak J, Hardy A (2017) Impact of highway traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils. Environ Sci Pollut Res 24:12778–12786CrossRefGoogle Scholar
  32. Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for γ-glutamylcysteine synthetase (γ-ECS) and metallothionein (MT2). FEBS Lett 404:216–220CrossRefGoogle Scholar
  33. Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44Google Scholar
  34. Sofo A, Bochicchio R, Amato M, Rendina N, Vitti A, Nuzzaci M, Altamura MM, Falasca G, Della Rovere F, Scopa A (2017) Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media. J Plant Physiol 216:174–180CrossRefGoogle Scholar
  35. Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aesticum L.). Environ Toxicol 20:195–201CrossRefGoogle Scholar
  36. Tattibayeva D, Nebot C, Miranda JM, Abuova AB, Baibatyrov TA, Kizatova MZ, Cepeda A, Franco CM (2016) A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan. Environ Sci Pollut Res 23:5527–5537CrossRefGoogle Scholar
  37. Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B (2014) The effect of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 9:e87582CrossRefGoogle Scholar
  38. Vaughn SF, Moser BR, Dien BS, Iten LB, Thompson AR, Seliskar DM, Gallagher JL (2013) Seashore mallow (Kosteletzkya pentacarpos) stems as a feedstock for biodegradable absorbents. Biomass Bioenergy 59:300–305CrossRefGoogle Scholar
  39. Wali M, Fourati E, Hmaeid N, Ghabriche R, Poschenrieder C, Abdelly C, Ghnaya T (2015) NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environ Sci Pollut Res Int 22:10769–10777CrossRefGoogle Scholar
  40. Wali M, Gunsé N, Llugany M, Corrales I, Abdelly C, Poschenrieder C, Ghnaya T (2016) High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by mainatining redox balance and photosynthesis. Planta 244:333–346CrossRefGoogle Scholar
  41. Wali M, Martos S, Pérez-Martín L, Abdelly C, Ghnaya T, Poschenrieder C, Gunsé B (2017) Cadmium hampers salt tolerance of Sesuvium portulacastrum. Plant Physiol Biochem 115:390–399CrossRefGoogle Scholar
  42. Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiol Plant 82:231–236CrossRefGoogle Scholar
  43. Wang Y, Wang S, Nan Z, Ma J, Zang F, Chen Y, Li Y, Zhang Q (2015) Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environ Sci Pollut Res 22:19756–19763CrossRefGoogle Scholar
  44. Weigel HJ, Jager HJ (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65:480–482CrossRefGoogle Scholar
  45. Yan H, Filardo F, Hu X, Zhao X, Fu DH (2016) Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environ Sci Pollut Res 23:3758–3769CrossRefGoogle Scholar
  46. Zhang C, Sale PW, Tang C (2016) Cadmium uptake by Carpobrotus rossii (Haw.) Schwantes under different saline conditions. Environ Sci Pollut Res 23:13480–13488CrossRefGoogle Scholar
  47. Zhou B, Wang J, Guo Z, Tan H, Zhu X (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ming-Xi Zhou
    • 1
  • Hélène Dailly
    • 1
  • Marie-Eve Renard
    • 1
  • Rui-Ming Han
    • 2
  • Stanley Lutts
    • 1
  1. 1.Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.School of EnvironmentNanjing Normal UniversityNanjingChina

Personalised recommendations