Skip to main content
Log in

Crystallization of microporous TiO2 through photochemical deposition of Pt for photocatalytic degradation of volatile organic compounds

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The photocatalytic mineralization efficiency of volatile organic compounds (VOCs) is determined by adsorption of reactants, separation of charge carriers, and reaction activity of catalyst surface. Herein, we provide a strategy to synthesize a novel catalyst, namely, PhPt-Micro, which is characterized by high adsorption ability, charge separation efficiency, and surface reaction activity. Toluene was chosen as the model VOC. The effects of photochemical deposition of Pt on the physical properties of microporous amorphous TiO2 (Micro) and toluene mineralization were studied using N2 adsorption/desorption, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, GC-flame ionization detection, and surface photovoltage spectroscopy (SPS) analyses. After photochemical treatment, the structure of Micro was optimized, and Pt nanoparticles were successfully deposited at the outlet of electrons on the catalyst surface. SPS result proved that the optimized structure enhanced the separation efficiency of charge carriers and the migration of photo-generated electrons to the PhPt-Micro surface. The quasi-equilibrium adsorption amount of toluene over PhPt-Micro was two times higher than that with commercial nano TiO2 (P25). The micropores concentrated toluene on the catalyst surface and hindered intermediate desorption. The mineralization efficiency of toluene over PhPt-Micro was 2.4 and 5.9 times higher than those over Micro and P25, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Bumajdad A, Madkour M (2014) Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys Chem Chem Phys 16:7146–7158

    Article  CAS  Google Scholar 

  • Chen H, Chen S, Quan X, Yu H, Zhao H, Zhang Y (2008) Fabrication of TiO2−Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. J Phys Chem C 112:91–100

    Google Scholar 

  • Chiarello GL, Zuliani A, Ceresoli D, Martinazzo R, Selli E (2016) Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production. ACS Catal 6:1345–1353

    Article  CAS  Google Scholar 

  • Costarramone N, Kartheuser B, Pecheyran C, Pigot T, Lacombe S (2015) Efficiency and harmfulness of air-purifying photocatalytic commercial devices: from standardized chamber tests to nanoparticles release. Catal Today 252:35–40

    Article  CAS  Google Scholar 

  • Donchev V, Kirilov K, Ivanov T, Germanova K (2006) Surface photovoltage phase spectroscopy - a handy tool for characterisation of bulk semiconductors and nanostructures. Materials science and engineering B-solid state materials for advanced. Technology 129:186–192

    CAS  Google Scholar 

  • Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L (2011) Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596

    Article  CAS  Google Scholar 

  • Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K (2015) Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds. Environ Sci Technol 49:6831–6837

    Article  CAS  Google Scholar 

  • Gong J, Imbault A, Farnood R (2017) The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2 under solar light illumination. Appl Catal B Environ 204:296–303

    Article  CAS  Google Scholar 

  • Hanzawa Y, Suzuki T, Kaneko K (1994) Entrance-enriched micropore filling of n-nonane. Langmuir 10:2857–2859

    Article  CAS  Google Scholar 

  • Hay SO, Obee T, Luo Z, Jiang T, Meng Y, He J, Murphy SC, Suib S (2015) The viability of photocatalysis for air purification. Molecules 20:1319–1356

    Article  CAS  Google Scholar 

  • Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv Funct Mater 20:2165–2174

    Article  CAS  Google Scholar 

  • Huang R-J, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, Haddad IE, Prévôt ASH (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222

    Article  CAS  Google Scholar 

  • Jansson I, Suarez S, Garcia-Garcia FJ, Sanchez B (2015) Zeolite-TiO2 hybrid composites for pollutant degradation in gas phase. Appl Catal B Environ 178:100–107

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Karatum O, Deshusses MA (2016) A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chem Eng J 294:308–315

    Article  CAS  Google Scholar 

  • Kim YM, Harrad S, Harrison RM (2001) Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol 35:997–1004

    Article  CAS  Google Scholar 

  • Kruse N, Chenakin S (2011) XPS characterization of au/TiO2 catalysts: binding energy assessment and irradiation effects. Appl Catal A Gen 391:367–376

    Article  CAS  Google Scholar 

  • Li H, Yong Z, Tu W, Ye J, Zou Z (2015a) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013

    Article  CAS  Google Scholar 

  • Li X, Fang S, Lei G, Han C, Ping Q, Liu W (2015b) Synthesis of flower-like Ag/AgCl-Bi2MoO6 plasmonic photocatalysts with enhanced visible-light photocatalytic performance. Appl Catal B Environ 176–177:62–69

    Article  CAS  Google Scholar 

  • Li J, Zhong J, Si Y, Huang S, Dou L, Li M, Liu Y, Ding J (2016) Improved solar-driven photocatalytic performance of BiOI decorated TiO2 benefiting from the separation properties of photo-induced charge carriers. Solid State Sci 52:106–111

    Article  CAS  Google Scholar 

  • Lippens BC, Boer JHD (1965) Studies on pore systems in catalysts: V. The t method. J Catal 4:319–323

    Article  CAS  Google Scholar 

  • Liu Y, Fu SL, Lu S, Zeng L, Tang D (2008) Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmos Environ 42:6247–6260

    Article  CAS  Google Scholar 

  • Lv J, Zhu L (2013) Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time. Environ Technol 34:1447–1454

    Article  CAS  Google Scholar 

  • Lyu J, Zhu L, Burda C (2013) Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of low-concentration air pollutants. ChemCatChem 5:3114–3123

    Article  CAS  Google Scholar 

  • Lyu J, Zhu L, Burda C (2014) Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2. Catal Today 225:24–33

    Article  CAS  Google Scholar 

  • Lyu J, Sun L, Zhong J, Fu Q, Zhang M, Wang S, Li J (2016) Shielding of surface photogenerated charges by SiO2 coating for the photocatalytic degradation of air pollutants. Chem Eng J 303:314–321

    Article  CAS  Google Scholar 

  • Lyu J, Gao J, Zhang M, Fu Q, Sun L, Hu S, Zhong J, Wang S, Li J (2017a) Construction of homojunction-adsorption layer on anatase TiO2 to improve photocatalytic mineralization of volatile organic compounds. Appl Catal B Environ 202:664–670

    Article  CAS  Google Scholar 

  • Lyu J, Gao J, Zhang M, Wang Y, Hu D, Yi J, Zhong J, Li J, Wang S (2017b) Optimization of defect distribution in photodegradation of air pollutants via SiO2-shell-enhanced fluorine modification. Appl Catal B Environ 205:631–636

    Article  CAS  Google Scholar 

  • Muhich CL, Zhou Y, Holder AM, Weimer AW, Musgrave CB (2012) Effect of surface deposited pt on the photoactivity of TiO2. J Phys Chem C 116:10138–10149

    Article  CAS  Google Scholar 

  • Munoz R, Malhautier L, Fanlo JL, Quijano G (2015) ChemInform abstract: biological technologies for the treatment of atmospheric pollutants. Int J Environ Anal Chem 95:1–18

    Article  CAS  Google Scholar 

  • Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  CAS  Google Scholar 

  • Pham TD, Lee BK, Lee CH (2016) The advanced removal of benzene from aerosols by photocatalytic oxidation and adsorption of cu-TiO2/PU under visible light irradiation. Br J Rheumatol 36:1341–1342

    Google Scholar 

  • Puddu V, Choi H, Dionysiou DD, Puma GL (2010) TiO2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl Catal B Environ 94:211–218

    Article  CAS  Google Scholar 

  • Sleiman M, Ferronato C, Chovelon J-M (2008) Photocatalytic removal of pesticide dichlorvos from indoor air: a study of reaction parameters, intermediates and mineralization. Environ Sci Technol 42:3018–3024

    Article  CAS  Google Scholar 

  • Song Z, Hrbek J, Osgood R (2005) Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett 5:1327–1332

    Article  CAS  Google Scholar 

  • Takeda N, Torimoto T, Sampath S, Kuwabata S, Yoneyama H (1995) Effect of inert supports for titanium-dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem 99:9986–9991

    Article  CAS  Google Scholar 

  • Tefera DT, Hashisho Z, Philips JH, Anderson JE, Nichols M (2014) Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon. Environ Sci Technol 48:5108–5117

    Article  CAS  Google Scholar 

  • Toro C, Jobson BT, Haselbach L, Shen S, Chung SH (2016) Photoactive roadways: determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmos Environ 139:37–45

    Article  CAS  Google Scholar 

  • Voogd P, Scholten JJF, Bekkum HV (1991) Use of the t-plot—De Boer method in pore volume determinations of ZSM-5 type zeolites. Colloids Surf 55:163–171

    Article  CAS  Google Scholar 

  • Wei W, Wang SX, Chatani S, Klimont Z, Cofala J, Hao JM (2008) Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmos Environ 42:4976–4988

    Article  CAS  Google Scholar 

  • Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen JO, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B, Besenbacher F (2008) The role of interstitial sites in the Ti3d defect state in the band gap of Titania. Science 320:1755–1759

    Article  CAS  Google Scholar 

  • Weon S, Choi W (2016) TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environ Sci Technol 50:2556–2563

    Article  CAS  Google Scholar 

  • Yang JS, Liao WP, Wu JJ (2013) Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces 5:7425–7431

    Article  CAS  Google Scholar 

  • Zare M, Mortezaali A, Shafiekhani A (2016) Photoelectrochemical determination of shallow and deep trap states of platinum-decorated TiO2 nanotube arrays for photocatalytic applications. J Phys Chem C 120:9017–9027

    Article  CAS  Google Scholar 

  • Zhang Z, Yates JT Jr (2010) Direct observation of surface-mediated electron-hole pair recombination in TiO2(110). J Phys Chem C 114:3098–3101

    Article  CAS  Google Scholar 

  • Zhang L, Ji H, Lei Y, Xiao W (2011) Oxygen adsorption on anatase surfaces and edges. Appl Surf Sci 257:8402–8408

    Article  CAS  Google Scholar 

  • Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H (2012) Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew Chem Int Ed 51:9628–9632

    Article  CAS  Google Scholar 

  • Zhang Q, Yuan B, Shao M, Wang X, Lu S, Lu K, Wang M, Chen L, Chang CC, Liu SC (2014) Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011. Atmos Chem Phys 14:6089–6101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Natural Science Foundation of Jiangsu Province (BK20150126), the National Natural Science Foundation of China (21707051), Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07202001-004, 2017ZX07202001-005), and Fundamental Research Funds for the Central Universities (JUSRP51512) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinze Lyu.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y., Tian, Y. et al. Crystallization of microporous TiO2 through photochemical deposition of Pt for photocatalytic degradation of volatile organic compounds. Environ Sci Pollut Res 25, 15662–15670 (2018). https://doi.org/10.1007/s11356-018-1767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1767-y

Keywords

Navigation