Ahmadi F, Ebrahimnezhad Y, Sis NM, Ghalehkandi JG (2013) The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int J Biosci 7(23):23–29. https://doi.org/10.12692/ijb/3.7
Article
Google Scholar
Auffan, M, Flahaut, E, Thill A, Mouchet F, Carriere M, Gauthier L, Bottero JY (2011) Ecotoxicology: nanoparticle reactivity and living organisms. In Nanoethics and nanotoxicology, Springer Berlin Heidelberg, рр. 325–357
Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887
CAS
Google Scholar
Bogoslovskaya OA, Sizova EA, Polyakova VS, Miroshnikov SA, Leipunsky IO, Olkhovskaya IP, Glushchenko NN (2009) Investigation of the safety of the introduction of copper nanoparticles with different physicochemical characteristics into the animal organism. Vestnik OGU 2:124–127
Google Scholar
Chen M, Yamamuro S, Farrell D, Majetich SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93(10):7551–7553
Churilov GI, Ivanycheva Y, Ampleev LE, Nazarova A, Zheglov T, Polishchuk S (2009) Introduction to the diet of rabbits wikis grown using ultrafine cobalt powders. Krolikovodstvo i zverovodstvo 1:16–17
Google Scholar
Claudio DM, Rojasa R (2006) Copper accumulation by bacteria and transfer to scallop larvae. Mar Pollut Bull 52(3):293–300
Article
CAS
Google Scholar
Ezhkov AM, Yapparov AK, Motina TY, Yapparov IA, Yezhkov VO (2015) Quality of meat of broiler chickens using the feed additive of nanosized bentonite. Glavnyj zootekhnik 1:45–49
Google Scholar
Folmanis GE, Kovalenko LV (2006) Biologically active iron nanopowders. MGOU Publishing House, Moscow
Google Scholar
Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ (2009) Silver nanoparticles as potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol 150:259–269. https://doi.org/10.1016/j.anifeedsci.2008.09.003
Article
CAS
Google Scholar
Galagudza MM, Korolev DV, Sonin DL, Aleksandrov IV, Postnov VN, Papayan GV, Shlyakhto EV (2010) Passive directed delivery of drugs to the ischemic myocardium using silica nanoparticles. Rossijskie nanotekhnologii 11-12:125–130
Google Scholar
Glushchenko NN, Bogoslovskaya OA, Olkhovskaya IP (2006) Comparative toxicity of salts and metal nanoparticles and their biological effect. Proceedings of the Academy of Industrial Ecology 3:46–47
Glushchenko NN, Bogoslovskaya OA, Baitukalov TA, Olkhovskaya IP (2008) Nanoparticles of metals in bioelementology. Mikroehlementy v medicine 1-2:52
Google Scholar
Gusev AI (2005) Nanomaterials, nanostructures, nanotechnologies. Moscow, Fizmatlit
Google Scholar
Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticles across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–142
Article
CAS
Google Scholar
Isajkina EY, Sizentsov AN, Bunina AU, Shablo AS, Ovsyannikova DC (2015) Study of the bioaccumulating ability of probiotic preparations for the intoxication of laboratory animals with copper. Izvestia ОGAU 1(51):147–149
Google Scholar
Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23(6):1116–1122
Article
CAS
Google Scholar
Kaweeteerawat C, Chang CH, Roy KR, Liu R, Li R, Toso D, Zhou ZH (2015) Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS Nano 9(7):7215–7225
Article
CAS
Google Scholar
Kensova R, Blazkova I, Vaculovicova M, Milosavljevic V, Blazkova L, Hynek D, Kopel P, Novotna M, Zehnalek J, Pohanka M, Trnkova L, Adam V, Kizek R (2015) The effect of cadmium ions and cadmium nanoparticles on chicken embryos and evaluation of organ accumulation. Int J Electrochem Sci 10:3623–3634
CAS
Google Scholar
Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382(1):72–80
Article
CAS
Google Scholar
Koch AM, Reynolds F, Merkle HP, Weissleder R, Josephson L (2005) Transport of surface-modified nanoparticles through cell monolayers. Chem bio chem 6(2):337–345
Article
CAS
Google Scholar
Kvan OB, Rusakova EA, Sizentsov AN, Kataev VY (2014) Effect of probiotic drugs on the content of toxic elements in the body of laboratory animals. Vestnik OGU 6(167):64–66
Google Scholar
Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F (2012) Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans 41(9):2804–2811
Article
CAS
Google Scholar
Lin YE, Vidic RD, Stout JE, McCartney CA, Yu VL (1998) Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32(7):1997–2000
Article
CAS
Google Scholar
Makarov DV (2014) Forecast of the development of the world market of nanopowders. Vestnik KRAUNC Fiziko-matematicheskie nauki 1:97–102
Google Scholar
Maynard AD (2006) Nanotechnology: a research strategy for addressing risk. Woodrow Wilson International Center for Scholars, Washington, DC, USA
Google Scholar
Mroczek-Sosnowska N, Łukasiewicz M, Wnuk A, Sawosz E, Niemiec J, Skot A, Jaworski S, Chwalibog A (2016) In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. J Sci Food Agric 96:3058–3062. https://doi.org/10.1002/jsfa.7477
Article
CAS
Google Scholar
Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganism—a review. In Atmospheric and biological environmental monitoring, Ed. Y. J. Kim, Ed. Springer Science+Business Media
Ognik K, Sembratowicz I, Cholewińska E, Wlazło Ł, Nowakowicz-Dębek B, Szlązak R, Tutaj K (2016) The effect of chemically-synthesized silver nanoparticles on performance and the histology and microbiological profile of the jejunum in chickens. Ann Anim Sci 16:439–450. https://doi.org/10.1515/aoas-2015-0067
CAS
Article
Google Scholar
Peshkov SA, Sizentsov AN, Nikiyan AN, Kobzev GI (2015) Study of the bioaccumulation of heavy metals by bacteria of the genus Bacillus using X-ray fluorescence analysis and atomic force microscopy. Sovremennye problemy nauki i obrazovanija 4:50–53
Google Scholar
Pineda LM, Chwalibog A, Sawosz E, Lauridsen C, Engberg RM, Elnif J, Hotowy A, Sawosz F, Ali A, Gao Y, Moghaddam HS (2012a) Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr 66:416–429. https://doi.org/10.1080/1745039X.2012.710081
Article
CAS
Google Scholar
Pineda L, Sawosz E, Hotowy A, Elnif J, Sawosz F, Ali A, Chwalibog A (2012b) Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comp Biochem Physiol A Mol Integr Physiol 161(3):315–319
Presnyak AR (2015) The use of micronutrient nanoparticles is a promising direction in the production of chicken broilers. Molodoj uchenyj 5(2):40–42
Google Scholar
Refaie AM, Ghazal MN, Easa FM, Barakat SA, Ge Y, Wh E (2015) Nano-copper as a new growth promoter in the diet of growing New Zealand white rabbits. Egypt J Rabbit Sci 25(1):39–57
Google Scholar
Rohner F, Ernst FO, Arnold M, Hilbe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB (2007) Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J Nutr 137(3):614–619
Article
CAS
Google Scholar
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716
Article
CAS
Google Scholar
Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 73:1112–1120. https://doi.org/10.1016/S1359-6446(03)02903-9
Article
CAS
Google Scholar
Santos A, Mauro MS, Diaz DM (2006) Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol 23:498–503. https://doi.org/10.1016/j.fm.2005.07.004
Article
CAS
Google Scholar
Sawosz E, Binek M, Grodzik M, Zieliska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61:444–451. https://doi.org/10.1080/17450390701664314
Article
CAS
Google Scholar
Schwegmann H, Frimmel FH (2010) Nanoparticles: interaction with microorganisms. In: Frimmel FH, Niessner R (eds) Nanoparticles in the water cycle. Springer, Berlin, Germany
Google Scholar
Sizentsov AN, Barysheva ES, Babushkina AE (2015) The ability of probiotic preparations based on bacteria of the genus Bacillus to bioaccumulate heavy metal ions in the body of laboratory animals. Russ Immunol J 9(2):753–755
Google Scholar
Sizentsov AN, Kvan OV, Babushkina АЕ, Исайкина Isajkina EY (2016) Bioaccumulative ability of bacteria of the genus Bacillus against lead ions under in vitro and in vivo conditions. Izvestia ОGAU 2(58): С.186–188
Sizova EA (2010) Mineral composition and morphofunctional aspects of liver reorganization in the enteral method of introducing copper nanoparticles such as CU10X. Vestnik Orenburgskogo gosudarstvennogo universiteta 6:92–94
Google Scholar
Sizova EA, Korolev VL, Makaev SA, Miroshnikova EP, Shakhov VA (2016) Morpho-biochemical indicators of blood in broilers when correcting the diet with salts and nanoparticles Cu. Sel'skohozyajstvennaya biologiya 6:903–911
Article
Google Scholar
Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336. https://doi.org/10.1016/0891-5849(94)00159-H
Article
CAS
Google Scholar
Taylor AA, Marcus IM, Guysi RL, Walker SL (2015) Metal oxide nanoparticles induce minimal phenotypic changes in a model colon gut microbiota. Environ Eng Sci 32:602–612. https://doi.org/10.1089/ees.2014.0518
Article
CAS
Google Scholar
Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, Lei HY (2002) In vitro action of carboxyfullerene. J Antimicrob Chemother 49(4):641–649
Article
CAS
Google Scholar
Vishnyakov AI, Ushakov AS, Lebedev SV (2011) Features of bone marrow hematopoiesis when copper nanoparticles are introduced per os and intramuscularly. Vestnik myasnogo skotovodstva 54:96–102
Google Scholar
Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521
Article
CAS
Google Scholar
Wang С, Wang MQ, Ye SS, Tao WJ, Du YJ, Wang C (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci 90(10):2223–2228. https://doi.org/10.3382/ps.2011-01511
Article
CAS
Google Scholar
Yapparov AH, Aliev SA, Yapparov IA, Ezhkova AM, Degtyareva IA, Yezhkov VO (2014) Scientific substantiation of obtaining nanostructured and nanocomposite materials and technology of their use in agriculture. Kazan': Centr innovacionnyh tekhnologij
Yausheva EV, Miroshnikov SA, Kosyan DB, Sizova ЕА (2016) Nanoparticles in combination with amino acids change productive and immunological indicators of broiler chicken. Agric Biol 51:912–920. https://doi.org/10.15389/agrobiology.2016.6.912eng
Article
Google Scholar
Yausheva EV, Miroshnikov SA, Kvan OV (2013a) On the understanding of the biological effect of metal nanoparticles. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii 9:54–56
Google Scholar
Yausheva EV, Zelepukhin AG, Ryabov NI, Kvan OV, Ramensky VA, Zaveryukha AK, Sirazetdinov FK (2013b) Investigation of metal nanoparticles as a source of microelements for animals. Sovremennye problemy nauki i obrazovaniya 5:470
Google Scholar
Yoon K, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575
Article
CAS
Google Scholar