Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15349–15356 | Cite as

Biochemical and morphological biomarkers of the liver damage in the Neotropical fish, Piaractus mesopotamicus, injected with crude extract of cyanobacterium Radiocystis fernandoi

  • Driele Tavares
  • Marcelo Gustavo Paulino
  • Ana Paula Terezan
  • João Batista Fernandes
  • Alessandra Giani
  • Marisa Narciso Fernandes
Research Article


Cyanobacterial proliferation in river and lakes is the result of eutrophication. The cyanobacterium Radiocystis fernandoi strain R28 produces mostly two MC variants MC-RR and MC-YR and small amounts of other oligopeptides, but does not produce MC-LR. The present study investigated the hepatotoxic potential of the crude extract of the R. fernandoi strain R28 on the Neotropical fish, Piaractus mesopotamicus, at 3, 6, and 24 h after intraperitoneal injection (100 μg MC-LR equivalent per kg−1 body mass) using biochemical and morphological biomarkers of liver damage. Although the protein phosphatases PP1 and PP2A were not inhibited during the 24-h treatment, liver parenchyma and hepatocyte structure were disrupted. Alkaline phosphatase increased at 3 h post-injection and decreased after 24 h; alanine aminotransferase and aspartate aminotransferase increased in a time-dependent manner up to 24 h indicating impaired liver function. Progressive histopathological changes were consistent with biochemical results demonstrating alterations in liver structure and function. In conclusion, the crude extract of R. fernandoi strain R28 has high hepatotoxic potential and can severely compromise fish health.


Bilirubin Liver histopathology Microcystins Phosphatases Teleost Transaminases 



This study was supported by the Energetic Company of Minas Gerais (CEMIG, Grant no. GT 346) and São Paulo Research Foundation (FAPESP, Grant no. 2012/00728-1). D. Tavares and M.G. Paulino acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and FAPESP (Grant no. 2012/00728-1), respectively, for scholarships.


  1. Atencio L, Moreno I, Josa A, Pichardo S, Moyano R, Blanco A, Cameán AM (2008) Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to Microcystis under laboratory conditions. Toxicon 52:1–12. CrossRefGoogle Scholar
  2. Bergmeyer HU, Beach WD (1983) Methods of enzymatic analysis. Fundamentals. Weinhein Deerfield Beach, Basel FL, 3a. ed. 579 p.Google Scholar
  3. Bernet D, Schimidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34. CrossRefGoogle Scholar
  4. Bieczynski F, Bianchi VA, Luquet CM (2013) Accumulation and biochemical effects of microcystin-LR on the Patagonian pejerrey (Odontesthes hatcheri) fed with the toxic cyanobacteria Microcystis aeruginosa. Fish Physiol Biochem 39:1309–1321. CrossRefGoogle Scholar
  5. Borges PAF, Train S, Rodrigues LC (2008) Estrutura do fitoplâncton, em curto período de tempo, em um braço do reservatório de Rosana (ribeirão do Corvo, Paraná, Brasil). Acta Sci Biol Sci 30:57–65. Google Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the protein-dye binding. Anal Biochememistry: methods in the biological sciences 72:248–254. CrossRefGoogle Scholar
  7. Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287. CrossRefGoogle Scholar
  8. Carmichael WW (1997) The cyanotoxins. Adv Bot Res 27:211–256. CrossRefGoogle Scholar
  9. Carmichael WW, An J (1999) Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins. Nat Toxins 7:377–385.<377 CrossRefGoogle Scholar
  10. Chen L, Chen J, Zhang X, Xie P (2016) A review of reproductive toxicity of microcystin. J Hazard Mater 301:381–399. CrossRefGoogle Scholar
  11. Cheung MY, Liang S, Lee J (2013) Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. J Microbiol 51:1–10. CrossRefGoogle Scholar
  12. Fevery J (2008) Bilirubin in clinical practice: a review. Liver Int 28:592–605. CrossRefGoogle Scholar
  13. Fischer WJ, Hitzfeld BC, Tencalla F, Eriksson JE, Mikhailov A, Dietrich DR (2000) Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol Sci 54:365–373CrossRefGoogle Scholar
  14. Fonseca IA, Maniglia TC, Rodrigues L, Prioli AJ, Prioli SMAP (2011) Identificação do gene mcyA em florações naturais de Radiocystis fernandoi, em um tributário do reservatório de Rosana, Brasil. Acta Sci Biol Sci 33:319–324. CrossRefGoogle Scholar
  15. Gupta N, Pant SC, Vijayaraghavan R, Rao PV (2003) Comparative toxicity evaluation cyanobacterial cyclic peptide toxin microcystins variants (LR, RR, YR) in mice. Toxicology 188:285–296. CrossRefGoogle Scholar
  16. Heresztyn T, Nicholson BC (2001) Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay. Water Res 35:3049–3056. CrossRefGoogle Scholar
  17. Jiang J, Gu X, Song R, Zhang Q, Geng J, Wang W, Yang L (2011) Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology 20:1000–1009. CrossRefGoogle Scholar
  18. Jiang LJ, Shan Z, Xu W, Wang X, Zhou J, Kong D, Xu J (2013) Microcystin-LR induced reactive oxygen species mediate cytoskeletal disruption and apoptosis of hepatocytes in Cyprinus carpio. PLoS One 8(12):e84768. CrossRefGoogle Scholar
  19. Komatsu M, Furukawa T, Ikeda R, Takumi S, Nong Q, Aoyama K, Akiyama S, Keppler D, Takeuchi T (2007) Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR-induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicol Sci 97:407–416. CrossRefGoogle Scholar
  20. Lee J, Lee S, Jiang X (2017) Cyanobacterial toxins in freshwater and food: important sources of exposure to humans. Annu Rev Food Sci Technol 8:281–304. CrossRefGoogle Scholar
  21. Li L, Xie P, Lei H, Zhang X (2013) Renal accumulation and effects of intraperitoneal injection of extracted microcystins in omnivorous crucian carp (Carassius auratus). Toxicon 70:62–69. CrossRefGoogle Scholar
  22. Lombardo M, Pinto FCR, Vieira JMS, Honda RY, Imenta AMC, Bemquerer MP, Carvalho LR, Kiyota S (2006) Isolation and structural characterization of microcystin-LR and three minor oligopeptides simultaneously produced by Radiocystis feernandoi (Chroococcales, Cyanobacteriae): a Brazilian toxic cyanobacterium. Toxicon 47:560–566CrossRefGoogle Scholar
  23. Malbrouck C, Trausch G, Devos P, Kestemont P (2003) Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comp Biochem Physiol - Part C 135:39–48. CrossRefGoogle Scholar
  24. Mitsoura A, Kagalou I, Papaioannu N, Berillis P, Mente E, Papadimitriou T (2013) The presence of microcystins in fish Cyprinus carpio tissues: a histopathological study. Inter Aquat Res:5–8.
  25. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245:194–205. CrossRefGoogle Scholar
  26. Orrenius S, Nicotera P, Zhivotovsky B (2010) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19. CrossRefGoogle Scholar
  27. Paulino MG, Tavares D, Bieczynski F, Pedrão PG, Souza NES, Sakuragui MM, Luquet CM, Terezan AP, Fernandes JB, Giani A, Fernandes MN (2017a) Crude extract of cyanobacteria (Radiocystis fernandoi, strain R28) induces liver impairments in fish. Aquat Toxicol 182:91–101. CrossRefGoogle Scholar
  28. Paulino MG, Rossi PA, Venturini FP, Tavares D, Souza NES, Sakuragui MM, Moraes G, Terezan AP, Fernandes JB, Giani A, Fernandes MN (2017b) Hepatotoxicity and metabolic effects of cellular extract of cyanobacterium Radiocystis fernandoi containing microcystins RR and YR on neotropical fish (Hoplias malabaricus). Chemosphere 175:431–439. CrossRefGoogle Scholar
  29. Pereira DA, Pimenta ADC, Giani A (2012) Profiles of toxic and non-toxic oligopeptides of Radiocistis fernandoii (Cyanobacteria) exposed to three different light intensities. Microbiol Res 167:413–421. CrossRefGoogle Scholar
  30. Pereira DA, Giani A (2014) Cell density-dependent oligopeptide production in cyanobacterial strains. FEMS Microbiol Ecol 88:175–183. CrossRefGoogle Scholar
  31. Pereira DA, Pimentel JSM, Bird DF, Giani A (2015) Changes in oligopeptide production by toxic cyanobacterial strains under iron deficiency. Aquat Microb Ecol 74:205–214. CrossRefGoogle Scholar
  32. Rinehart KL, Harada K, Namikoshi M, Chen C, Harvir CA (1988) Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 110:8557–8558. CrossRefGoogle Scholar
  33. Runnegar M, Berndt N, Kong S, Lee EYC, Zhang L (1995) In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem Biophys Res Commun 216:162–169. CrossRefGoogle Scholar
  34. Sant’Anna CL, Azevedo MTP, Werner VR, Dogo CR, Rios FR, Carvalho LR (2008) Review of toxic species of cyanobacteria in Brazil. Algol Stud 126:251–265. CrossRefGoogle Scholar
  35. Shi Y, Jiang J, Shan Z, Bu Y, Deng Z, Cheng Y (2015) Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR. Ecotoxicology 24:511–519. CrossRefGoogle Scholar
  36. Sims FH, Horn C (1958) Some observations on Powell’s method for the determination of serum bilirubin. Am J Clin Pathol 29:412–417CrossRefGoogle Scholar
  37. Tencalla F, Dietrich D (1997) Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss). Toxicon 35:583–595. CrossRefGoogle Scholar
  38. Torkadi PP, Apte IC, Bhute AK (2013) Biochemical evaluation of patients of alcoholic liver disease and non-alcoholic liver disease. Indian J Clin Biochem 29:79–83. CrossRefGoogle Scholar
  39. USEPA - United States Environmental Protection Agency (2015) Health effects support document for the cyanobacterial toxin microcystins. EPA-820R15102, Washington, DCGoogle Scholar
  40. Vieira JMS, Azevedo MTP, Azevedo SMFO, Honda RY, Correa B (2003) Microcystin production by Radiocystis fernandoi (Chroococcales, cyanobacteria) isolated from a drinking water reservoir in the city of Belém, PA, Brazilian Amazonia region. Toxicon 42:709–713. CrossRefGoogle Scholar
  41. Vroon DH, Israili Z (1990) Chapter 99. Aminotransferases. In: Walker HK, Hall WD, Hurst JW (eds) Source clinical methods: the history, physical, and laboratory examinations. 3rd edition. Butterworths, Boston.Google Scholar
  42. Welker M, Von Döhren H (2006) Cyanobacterial peptides: nature’s own combinatorial biosynthesis. FEMS. Microbiol Rev 30:530–563. Google Scholar
  43. Wickstrom ML, Khan SA, Haschek WM, Wyman JF, Eriksson JE, Schaeffer DJ, Beasley VR (1995) Alterations in microtubules, intermediate filaments, and microfilaments induced by microcystin-LR in cultured cells. Toxicol Pathol 23(3):326–337. CrossRefGoogle Scholar
  44. Woźny M, Lewczuk B, Ziółkowska N, Gomułka P, Dobosz S, Łakomiak A, Florczyk M, Brzuzan P (2016) Intraperitoneal exposure of whitefish to microcystin-LR induces rapid liver injury followed by regeneration and resilience to subsequent exposures. Toxicol Appl Pharmacol 313:68–87. CrossRefGoogle Scholar
  45. Zeng J, Tu W, Lazar L, Chen D, Zhao J, Xu J (2014) Hyperphosphorylation of microfilament-associated proteins is involved in microcystin-LR-induced toxicity in HL7702 cells. Environ Toxicol 30(8):981–988. CrossRefGoogle Scholar
  46. Zhang H, Zhang J, Chen Y, Zhu Y (2008) Microcystin-RR induces apoptosis in fish lymphocytes by generating reactive oxygen species and causing mitochondrial damage. Fish Physiol Biochem 34:307–312. CrossRefGoogle Scholar
  47. Zhou W, Liang H, Zhang X (2015) Erythrocyte damage of crucian carp (Carassius auratus) caused by microcystin-LR: in vitro study. Fish Physiol Biochem 38:849–858. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Driele Tavares
    • 1
  • Marcelo Gustavo Paulino
    • 1
    • 2
  • Ana Paula Terezan
    • 3
  • João Batista Fernandes
    • 3
  • Alessandra Giani
    • 4
  • Marisa Narciso Fernandes
    • 1
    • 5
  1. 1.Department of Physiological SciencesFederal University of São CarlosSão CarlosBrazil
  2. 2.Federal University of Tocantins, Campus AraguainaAraguaínaBrazil
  3. 3.Department of ChemistryFederal University of São CarlosSão CarlosBrazil
  4. 4.Department of BotanyFederal University of Minas GeraisBelo HorizonteBrazil
  5. 5.Department of Physiological SciencesFederal University of São CarlosSão CarlosBrazil

Personalised recommendations