Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15474–15483 | Cite as

Catalytic decomposition of PCDD/Fs on a V2O5-WO3/nano-TiO2 catalyst: effect of NaCl

  • Cuicui Du
  • Longjie Ji
  • Yaqi Peng
  • Minghui Tang
  • Xuan Cao
  • Shengyong Lu
Research Article


The effect of NaCl addition on the properties, activity, and deactivation of a V2O5-WO3/nano-TiO2 catalyst was investigated during catalytic decomposition of gas-phase polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The extent of deactivation relates directly to the NaCl loading of the catalyst. Poisoning by sodium neutralizes acid sites, interacts strongly with active VOx species, and reduces the redox capacity of catalysts. In addition, NaCl is also a chlorine source and may actually accelerate the synthesis of new PCDD/Fs. Washing a catalyst with dilute sulfuric acid largely restores catalytic activity, breaking the interaction of Na+ ions and dispersed vanadia and removing Na from the catalyst surface. Consequently, catalyst acidity and redox capacity almost recover. Furthermore, sulfate residues react with surface adsorbed water to generate Brønsted acid sites, ensuing a surge of strong acidity of the catalysts.


MSW Na poisoning Deactivation Regeneration PCDD/Fs Catalytic decomposition 


Funding information

This project was supported by the Innovative Research Groups of the National Natural Science Foundation of China (51621005), the Zhejiang Provincial Natural Science Foundation of China (R14E060001), the Doctoral Program of Higher Education (20130101110097), and the Program of Introducing Talents of Discipline to University (B08026).

Supplementary material

11356_2018_1740_MOESM1_ESM.docx (51 kb)
Figure S1 (DOCX 51 kb)


  1. Albonetti S, Blasioli S, Bonelli R, Mengou JE, Scire S, Trifiro F (2008) The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts. Appl Catal a-Gen 341:18–25. CrossRefGoogle Scholar
  2. Bertinchamps F, Treinen M, Blangenois N, Mariage E, Gaigneaux E (2005) Positive effect of NO on the performances of VO/TiO-based catalysts in the total oxidation abatement of chlorobenzene. J Catal 230:493–498. CrossRefGoogle Scholar
  3. Bertinchamps F, Grégoire C, Gaigneaux EM (2006) Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: Part I: Identification of the optimal main active phases and supports. Appl Catal B-Environ 66:1–9. CrossRefGoogle Scholar
  4. Besselmann S, Loffler E, Muhler M (2000) On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: a Raman and in situ DRIFTS study. J Mol Catal a-Chem 162:401–411. CrossRefGoogle Scholar
  5. Carmello D, Finocchio E, Marsella A, Cremaschi B, Leofanti G, Padovan M, Busca G (2000) An FT-IR and reactor study of the dehydrochlorination activity of CuCl2/gamma-Al2O3-based oxychlorination catalysts. J Catal 191:354–363. CrossRefGoogle Scholar
  6. Chang MB, Lin JJ, Chang SH (2002) Characterization of dioxin emissions from two municipal solid waste incinerators in Taiwan. Atmos Environ 36:279–286. CrossRefGoogle Scholar
  7. Chen T, Yan JH, Lu SY, Li XD, Gu YL, Dai HF, Ni MJ, Cen KF (2008) Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China. J Hazard Mater 150:510–514. CrossRefGoogle Scholar
  8. Chen L, Li JH, Ge MF (2011) The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J 170:531–537. CrossRefGoogle Scholar
  9. Cho CH, Ihm SK (2002) Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environ Sci Technol 36:1600–1606. CrossRefGoogle Scholar
  10. Choi J, Suh DJ (2014) Complete oxidation of 1,2-dichlorobenzene over V2O5-TiO2 and MnOx-TiO2 aerogels. Korean J Chem Eng 31:1773–1779. CrossRefGoogle Scholar
  11. Christensen KA, Livbjerg H (1996) A field study of submicron particles from the combustion of straw. Aerosol Sci Technol 25:185–199CrossRefGoogle Scholar
  12. Christensen KA, Stenholm M, Livbjerg H (1998) The formation of submicron aerosol particles, HCl and SO2 in straw-fired boilers. J Aerosol Sci 29:421–444. CrossRefGoogle Scholar
  13. Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation. Appl Catal B-Environ 94:38–45. CrossRefGoogle Scholar
  14. Debecker DP, Delaigle R, Hung PC, Buekens A, Gaigneaux EM, Chang MB (2011) Evaluation of PCDD/F oxidation catalysts: confronting studies on model molecules with tests on PCDD/F-containing gas stream. Chemosphere 82:1337–1342. CrossRefGoogle Scholar
  15. Delaigle R, Debecker DP, Bertinchamps F, Gaigneaux EM (2009) Revisiting the behaviour of vanadia-based catalysts in the abatement of (Chloro)-aromatic pollutants: towards an integrated understanding. Top Catal 52:501–516. CrossRefGoogle Scholar
  16. Du CC, Lu SY, Wang QL, Buekens AG, Ni MJ, Debecker DP (2018) A review on catalytic oxidation of chloroaromatics from flue gas. Chem Eng J 334:519–544. CrossRefGoogle Scholar
  17. Finocchio E, Busca G, Notaro M (2006) A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Appl Catal B-Environ 62:12–20. CrossRefGoogle Scholar
  18. Finocchio E, Ramis G, Busca G (2011) A study on catalytic combustion of chlorobenzenes. Catal Today 169:3–9. CrossRefGoogle Scholar
  19. Gao F, Tang X, Yi H, Zhao S, Zhang T, Li D, Ma D (2014) The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3. Chin Sci Bull 59:3966–3972. CrossRefGoogle Scholar
  20. Gellings PJ, Bouwmeester HJM (2000) Solid state aspects of oxidation catalysis. Catal Today 58:1–53. CrossRefGoogle Scholar
  21. Goemans M, Clarysse P, Joannès J, De Clercq P, Lenaerts S, Matthys K, Boels K (2003) Catalytic NOx reduction with simultaneous dioxin and furan oxidation. Chemosphere 50:489–497. CrossRefGoogle Scholar
  22. Haber J, Turek W (2000) Kinetic studies as a method to differentiate between oxygen species involved in the oxidation of propene. J Catal 190:320–326. CrossRefGoogle Scholar
  23. Hatayama F, Ohno T, Maruoka T, Miyata H (1991) Reactivities of meta-xylene, phenol and benzene on vanadium-oxides layered on TiO2 and ZrO2. React Kinet Catal Lett 45:265–269. CrossRefGoogle Scholar
  24. He C, Yu YK, Shen Q, Chen JS, Qiao NL (2014) Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Appl Surf Sci 297:59–69. CrossRefGoogle Scholar
  25. Huang H, Buekens A (1995) On the mechanisms of dioxin formation in combustion processes. Chemosphere 31:4099–4117. CrossRefGoogle Scholar
  26. Hung PC, Chang SH, Lin SH, Buekens A, Chang MB (2014) Pilot tests on the catalytic filtration of dioxins. Environ Sci Technol 48:3995–4001. CrossRefGoogle Scholar
  27. Larrubia MA, Busca G (2002) An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx catalysts. Appl Catal B-Environ 39:343–352. CrossRefGoogle Scholar
  28. Larrubia MA, Gutierrez-Alejandre A, Ramirez J, Busca G (2002) A FT-IR study of the adsorption of indole, carbazole, benzothiophene, dibenzothiophene and 4,6-dibenzothiophene over solid adsorbents and catalysts. Appl Catal a-Gen 224:167–178. CrossRefGoogle Scholar
  29. Li HF, Lu GZ, Dai QG, Wang YQ, Guo Y, Guo YL (2011) Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl Catal B-Environ 102:475–483. CrossRefGoogle Scholar
  30. Li Q, Chen S, Liu Z, Liu Q (2015a) Combined effect of KCl and SO2 on the selective catalytic reduction of NO by NH3 over V2O5/TiO2 catalyst. Appl Catal B-Environ 164:475–482. CrossRefGoogle Scholar
  31. Li WZ, Gao F, Li Y, Walter ED, Liu J, Peden CHF, Wang Y (2015b) Nanocrystalline anatase titania-supported vanadia catalysts: facet-dependent structure of vanadia. J Phys Chem C 119:15094–15102. CrossRefGoogle Scholar
  32. Lichtenberger J, Amiridis MD (2004) Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J Catal 223:296–308. CrossRefGoogle Scholar
  33. Lu SY, Wang QL, Stevens WR, Lee CW, Gullett BK, Zhao YX (2014) Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas. Appl Catal B-Environ 147:322–329. CrossRefGoogle Scholar
  34. Ma XD, Shen J, Pu W, Sun H, Pang Q, Guo J, Zhou T, Cao H (2013) Water-resistant Fe-Ca-O-x/TiO2 catalysts for low temperature 1,2-dichlorobenzene oxidation. Appl Catal a-Gen 466:68–76. CrossRefGoogle Scholar
  35. Mao D, He F, Zhao P, Liu ST (2015) Enhancement of resistance to chlorine poisoning of Sn-modified MnCeLa catalysts for chlorobenzene oxidation at low temperature. RSC Adv 5:10040–10047. CrossRefGoogle Scholar
  36. McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Eng J 86:343–368. CrossRefGoogle Scholar
  37. Nie AM, Yang HS, Li Q, Fan XY, Qiu FM, Zhang XB (2011) Catalytic xxidation of chlorobenzene over V2O5/TiO2-carbon nanotubes composites. Ind Eng Chem Res 50:9944–9948. CrossRefGoogle Scholar
  38. Olie K, Vermeulen PL, Hutzinger O (1977) Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere 6:455–459. CrossRefGoogle Scholar
  39. Peng Y, Li J, Si W, Luo J, Wang Y, Fu J, Li X, Crittenden J, Hao J (2015) Deactivation and regeneration of a commercial SCR catalyst: comparison with alkali metals and arsenic. Appl Catal B-Environ 168:195–202. CrossRefGoogle Scholar
  40. Pushkarev VV, Kovalchuk VI, d'Itri JL (2004) Probing defect sites on the CeO2 surface with dioxygen. J Phys Chem B 108:5341–5348. CrossRefGoogle Scholar
  41. Reiche MA, Maciejewski M, Baiker A (2000) Characterization by temperature programmed reduction. Catal Today 56:347–355. CrossRefGoogle Scholar
  42. Schimmoeller B, Delaigle R, Debecker DP, Gaigneaux EM (2010) Flame-made vs wet-impregnated vanadia/titania in the total oxidation of chlorobenzene possible role of VOx species. Catal Today 157:198–203. CrossRefGoogle Scholar
  43. Tang F, Xu B, Shi H, Qiu J, Fan Y (2010) The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Appl Catal B-Environ 94:71–76. CrossRefGoogle Scholar
  44. Yang Y, Zhang S, Wang S, Zhang K, Wang H, Huang J, Deng S, Wang B, Wang Y, Yu G (2015) Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies. Environ Sci Technol 49:4473–4480. CrossRefGoogle Scholar
  45. Yu MF, Lin XQ, Li XD, Chen T, Yan JH (2016) Catalytic decomposition of PCDD/Fs over nano-TiO2 based V2O5/CeO2 catalyst at low temperature. Aerosol Air Qual Res 16:2011–2022. CrossRefGoogle Scholar
  46. Zheng YJ, Jensen AD, Johnsson JE (2004) Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration. Ind Eng Chem Res 43:941–947. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Beijing Construction Engineering Group Environmental Remediation Co., Ltd.BeijingChina

Personalised recommendations