Skip to main content

Agricultural solid waste for sorption of metal ions, part II: competitive assessment in multielemental solution and lake water

Abstract

Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for the removal of Cu(II), Fe(II), Mn(II), and Zn(II) from multielemental solutions and lake water, in batch processes. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and chemically modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). The results showed higher adsorption efficiency for MSB and either NLR or MLR. The maximum adsorption capacities (qmax) in multielemental solution for Cu(II), Fe(II), Mn(II), and Zn(II) were 35.86, 31.42, 3.33, and 24.07 mg/g for NLR; 25.36, 27.95, 14.06, and 6.43 mg/g for MLR; 0.92, 3.94, 0.03, and 0.18 mg/g for NSB; and 54.11, 6.52, 16.7, and 1.26 mg/g for MSB, respectively. The kinetic studies with chemically modified biomasses indicated that sorption was achieved in the first 5 min and reached equilibrium around 30 min. Sorption of Cu(II), Fe(II), Mn(II), and Zn(II) in lake water by chemically modified biomasses was 24.31, 14.50, 8.03, and 8.21 mg/g by MLR, and 13.15, 10.50, 6.10, and 5.14 mg/g by MSB, respectively. These biosorbents are promising and low costs agricultural residues, and as for lettuce roots, these showed great potential even with no chemical modification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Al-Asheh S, Banat F, Al-Omari A, Duvnjak Z (2000) Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data. Chemosphere 41:659–665

    CAS  Article  Google Scholar 

  2. Akhter MF, Omelon CR, Gordon RA, Moser D, Macfie SM (2014) Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ Exp Bot 100:10–19

    CAS  Article  Google Scholar 

  3. Araújo GCL, Lemos SG, Ferreira AG, Freitas H, Nogueira ARA (2007) Effect of pre-treatment and supporting media on Ni(II), Cu(II), Al(III) and Fe(III) sorption by plant root material. Chemosphere 68:537–545

    Article  Google Scholar 

  4. Barka N, Abdennouri M, Boussaoud A, Makhfouk ME (2010) Biosorption characteristics of cadmium (II) onto Scolymus hispanicus L. as low-cost natural biosorbent. Desalination 1:66–71

    Article  Google Scholar 

  5. Becaria A, Lahiri DK, Bondy SC, Chen M, Hamadeh A, Li H, Taylor R, Campbell A (2006) Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain. J Neuroimmunol 176:16–23

    CAS  Article  Google Scholar 

  6. Bouchard MF, Sauvé S, Barbeau B, Legrand M, Brodeur ME, Bouffard T, Limoges E, Bellinger DC, Mergler D (2011) Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspec 119:138–143

    CAS  Article  Google Scholar 

  7. Carrilho ENVM, Gilbert TR (2000) Assessing metal sorption on the marine alga Pilayella littoralis. J Environ Monit 2:410–415

    CAS  Article  Google Scholar 

  8. Carrilho ENVM, Gonzalez MH, Nogueira AR, Cruz GM, Nobrega JA (2002) Microwave-assisted acid decomposition of animal- and plant-derived samples for element analysis. J Agri Food Chem 50:4164–4168

    CAS  Article  Google Scholar 

  9. Carrilho ENVM, Nóbrega JA, Gilbert TR (2003) The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry. Talanta 60:1131–1140

    CAS  Article  Google Scholar 

  10. Chen JP, Chen WR, Hsu RC (1996) Biosorption of copper from aqueous solutions by plant root tissues. J Ferment Bioeng 81(5):458–463

    CAS  Article  Google Scholar 

  11. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    CAS  Article  Google Scholar 

  12. Elwakeel KZ, El-Sayed GO, Abo El-Nassr SM (2015) Removal of ferrous and manganous from water by activated carbon obtained from sugarcane bagasse. Desalin Water Treat 55(2):471–483

    CAS  Article  Google Scholar 

  13. Febrianto J, Kosasih AN, Sunarso J, JU YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mat 162:616–645

    CAS  Article  Google Scholar 

  14. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    CAS  Article  Google Scholar 

  15. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    CAS  Article  Google Scholar 

  16. Guilherme AA, Dantas PVF, Santos ES, Fernandes FAN, Macedo GR (2015) Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Brazilian J Chem Eng 32:23–33

    CAS  Article  Google Scholar 

  17. Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interf Sci 162:39–58

    Article  Google Scholar 

  18. Gupta VK, Ali I (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep Purif Technol 18:131–140

    CAS  Article  Google Scholar 

  19. Hadi P, Barford J, McKay G (2013) Synergistic effect in the simultaneous removal of binary cobalt–nickel heavy metals from effluents by a novel e-waste-derived material. Chem Eng J 228:140–146

    CAS  Article  Google Scholar 

  20. Hellferich FG (1962) Ion exchange. MacGraw-Hill, New York, p 133

    Google Scholar 

  21. Hinz C (2001) Description of sorption data with isotherm equations. Geoderma 99:225–243

    CAS  Article  Google Scholar 

  22. Ho YS, Wase DAJ, Forster CF (1996) Kinetics study of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol 17:71–77

    CAS  Article  Google Scholar 

  23. Ho YS, Porter JF, Mckay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33

    CAS  Article  Google Scholar 

  24. Homagai PL, Ghimire KN, Inoue K (2010) Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour Technol 101:2067–2069

    CAS  Article  Google Scholar 

  25. Iwami O, Watanabe T, Nakatsuka H, Ikeda M (1994) Motor neuron disease on the Kii Peninsula of Japan: excess manganese intake from food coupled with low magnesium in drinking water as a risk factor. Sci Total Environ 149:121–135

    CAS  Article  Google Scholar 

  26. Labuto G, Carrilho ENVM (2016) Bioremediation in Brazil: scope and challenges to boost up the bioeconomy. In: Prasad MNV (ed) Bioremediation and Bioeconomy, 1st edn. Elsevier, Amsterdam, pp 569–586

    Chapter  Google Scholar 

  27. Lasat MM (1999) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25

    Google Scholar 

  28. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthe`s V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    CAS  Article  Google Scholar 

  29. Low KS, Lee CK, Liew SC (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    CAS  Article  Google Scholar 

  30. Lutts S, Qin P, Han RM (2016) Salinity influences biosorption of heavy metals by the roots of the halophyte plant species Kosteletzkya pentacarpos. Ecol Eng 95:682–689

    Article  Google Scholar 

  31. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    CAS  Article  Google Scholar 

  32. Martín-Lara MA, Rico ILR, Vicente IDLCA, García GB, Hoces MC (2010) Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 256:58–63

    Article  Google Scholar 

  33. Milani PA (2017) Sugarcane bagasse and lettuce roots used as biosorbents for metal ions in aqueous medium. Dissertation, Federal University of Sao Carlos, SP, Brazil

  34. Milne RJ, Perroux JM, Rae AL, Reinders A, Ward JM, Offler CE, Patrick JW, Grof CP (2017) Sucrose transporter localization and function in phloem unloading in developing stems. Plant Physiol 173:1330–1341

    CAS  Article  Google Scholar 

  35. Mututuvari TM, Tran CD (2014) Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether. J Hazard Mater 264:449–459

    CAS  Article  Google Scholar 

  36. Ngah WW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Article  Google Scholar 

  37. Osman HE, Badwy RK, Ahmad HF (2010) Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol 2:51–62

    Google Scholar 

  38. Putra WP, Kamari A, Yusoff SNM, Ishak CF, Mohamed A, Hashim N, Isa IM (2014) Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J Encapsulation Adsorp Sci 4:25

    Article  Google Scholar 

  39. Rana K, Shah M, Limbachiya N (2014) Adsorption of copper Cu (II) metal ion from waste water using sulphuric acid treated sugarcane bagasse as adsorbent. Int J Adv Eng Res Sci 1:55–59

    Google Scholar 

  40. Rao M, Parwate AV, Bhole AG (2002) Removal of Cr(VI) and Ni(II) from aqueous solution using bagasse and fly ash. Waste Manag 22:821–830

    CAS  Article  Google Scholar 

  41. Santos VCG, Souza JV, Tarley CR, Caetano J, Dragunski DC (2011) Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water Air Soil Poll 216:351–359

    Article  Google Scholar 

  42. Soliman EM, Ahmed SA, Fadl AA (2011) Reactivity of sugar cane bagasse as a natural solid phase extractor for selective removal of Fe(III) and heavy-metal ions from natural water samples. Arab J Chem 4:63–70

    CAS  Article  Google Scholar 

  43. Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A 100:11065–11069

    CAS  Article  Google Scholar 

  44. Ullah I, Nadeem R, Iqbal M, Manzoor Q (2013) Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol Eng 60:99–107

    Article  Google Scholar 

  45. Vaghetti JCPC, Lima EC, Royer B, Cunha BM, Cardoso NF, Brasil JL, Dias SL (2009) Pecan nutshell as biosorbent to remove Cu(II), Mn (II) and Pb(II) from aqueous solutions. J Hazard Mater 162:270–280

    CAS  Article  Google Scholar 

  46. Verma D, Gope PC, Maheshwari MK, Sharma RK (2012) Bagasse fiber composites—a review. J Mater Environ Sci 6:1079–1092

    Google Scholar 

  47. Water O (2012) Edition of the Drinking Water Standards and Health Advisories. EP Agency (ed.), United States

  48. Yu H, Pang J, Wu M, Wu Q, Huo C (2014) Utilization of modified corn silk as a biosorbent for solid-phase extraction of Cr(III) and chromium speciation. Anal Sci 30:1081–1087

    CAS  Article  Google Scholar 

  49. Zheng JC, Liu HQ, Feng HM, Li WW, Lam MHW, Lam PKS, Yu HQ (2016) Competitive sorption of heavy metals by water hyacinth roots. Environ Poll 219:837–845

    CAS  Article  Google Scholar 

  50. Zheng JC, Feng HM, Lam MHW, Lam PKS, Ding YW, Yu HQ (2009) Removal of Cu (II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J Hazard Mater 171:780–785

    CAS  Article  Google Scholar 

  51. Zietz BP, Dieter HH, Lakomek M, Schneider H, Hartmut BKG (2003) Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Sci Total Environ 302:127–144

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo–FAPESP (Proc. 2016/06271-4) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–CAPES for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elma Neide Vasconcelos Martins Carrilho.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milani, P.A., Consonni, J.L., Labuto, G. et al. Agricultural solid waste for sorption of metal ions, part II: competitive assessment in multielemental solution and lake water. Environ Sci Pollut Res 25, 35906–35914 (2018). https://doi.org/10.1007/s11356-018-1726-7

Download citation

Keywords

  • Biomass valorization
  • Sugarcane bagasse
  • Lettuce roots
  • Biosorption
  • Isotherms
  • Sorption kinetic
  • Water decontamination
  • Lake water