Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15422–15435 | Cite as

Zinc in an ultraoligotrophic lake food web

  • Juan Cruz Montañez
  • María A. Arribére
  • Andrea Rizzo
  • Marina Arcagni
  • Linda Campbell
  • Sergio Ribeiro Guevara
Research Article
  • 65 Downloads

Abstract

Zinc (Zn) bioaccumulation and trophic transfer were analyzed in the food web of Lake Nahuel Huapi, a deep, unpolluted ultraoligotrophic system in North Patagonia. Benthic macroinvertebrates, plankton, and native and introduced fish were collected at three sites. The effect of pyroclastic inputs on Zn levels in lacustrine food webs was assessed by studying the impact of the eruption of Puyehue-Cordón Caulle volcanic complex (PCCVC) in 2011, by performing three sampling campaigns immediately before and after the PCCVC eruption, and after 2 years of recovery of the ecosystem. Zinc trophodynamics in L. Nahuel Huapi food web was assessed using nitrogen stable isotopes (δ15N). There was no significant increase of Zn concentrations ([Zn]) in L. Nahuel Huapi biota after the PCCVC eruption, despite the evidence of [Zn] increase in lake water that could be associated with volcanic ash leaching. The organisms studied exhibited [Zn] above the threshold level considered for dietary deficiency, regulating Zn adequately even under a catastrophic situations like PCCVC 2011 eruption. Zinc concentrations exhibited a biodilution pattern in the lake’s food web. To the best of our knowledge, present research is the first report of Zn biodilution in lacustrine systems, and the first to study Zn transfer in a freshwater food web including both pelagic and benthic compartments.

Keywords

Plankton Macroinvertebrate Fish Nitrogen stable isotopes Lake Nahuel Huapi North Patagonia 

Notes

Acknowledgements

The authors wish to express their gratitude to the staff of the Reactor RA–6 (Centro Atómico Bariloche), and the Queen’s University Facility for Isotope Research for their assistance in sample analysis. This work was partially supported by the projects PICT 2005-33838, PICT 2006-1051, and PICT 2012-1720 of the Agencia Nacional de Promoción Científica y Tecnológica (Argentina), project Cod. 06/C414 (Universidad Nacional de Cuyo), and by the International Atomic Agency, project TCA-ARG/7/006.

Supplementary material

11356_2018_1725_MOESM1_ESM.docx (55 kb)
ESM 1 (DOCX 54 kb)

References

  1. Amundsen PA, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS (1997) Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201:211–224CrossRefGoogle Scholar
  2. Alcorlo P, Otero M, Crehuet M, Baltanás A, Montes C (2006) The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Sci Total Environ 366:380–390CrossRefGoogle Scholar
  3. Alsop DH, McGeer JC, McDonald D, Wood CM (1999) Costs of chronic waterborne zinc exposure and the consequences of zinc acclimation on the gill/zinc interactions of rainbow trout in hard and soft water. Biology Faculty Publications. Paper 27. Wilfrid Laurier UniversityGoogle Scholar
  4. Alsop DH, Wood CM (2000) Kinetic analysis of zinc accumulation in the gills of juvenile rainbow trout: effects of zinc acclimation and implications for biotic ligand modeling. Environ Toxicol Chem 19(7):1911–1918CrossRefGoogle Scholar
  5. Anderson MB, Reddy P, Preslan JE, Fingerman M, Bollinger JE, Jolibois L, Maheshwarudu G, George WJ (1997) Metal accumulation in crayfish, Procambarus clarkii, exposed to a petroleum-contaminated bayou in Louisiana. Ecotoxicol Environ Saf 37:267–272CrossRefGoogle Scholar
  6. Arcagni M, Rizzo A, Campbell LM, Arribére MA, Juncos R, Reissig M, Kyser K, Barriga JP, Battini M, Ribeiro Guevara S (2015) Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia. J Great Lakes Res 41(3):916–925CrossRefGoogle Scholar
  7. Arribére MA, Diéguez MC, Ribeiro Guevara S, Queimaliños CP, Fajon V, Reissig M, Horvat M (2010) Mercury in an ultraoligotrophic North Patagonian Andean lake (Argentina): concentration patterns in different components of the water column. J Environ Sci 22:1171–1178CrossRefGoogle Scholar
  8. Asante KA, Agusa T, Mochizuki H, Ramu K, Inoue S, Kubodera T, Takahashi S, Subramanian A, Tanabe S (2008) Trace elements and stable isotopes (δ13C and δ15N) in shallow and deep-water organisms from the East China Sea. Environ Pollut 156:862–873CrossRefGoogle Scholar
  9. Asante KA, Agusa T, Kubota R, Mochizuki H, Ramu K, Nishida S, Ohta S, Yeh H, Subramanian A, Tanabe S (2010) Trace elements and stable isotopes (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea. Mar Pollut Bull 60:1560–1570CrossRefGoogle Scholar
  10. Bellante A, Maccarone V, Buscaino G, Buffa G, Filiciotto F, Traina A, Del Core M, Mazzola S, Sprovieri M (2015) Trace element concentrations in red swamp crayfish (Procambarus clarkii) and surface sediments in Lake Preola and Gorghi Tondi natural reserve, SW Sicily. Environ Monit Assess 187:1–18CrossRefGoogle Scholar
  11. Bennet-Chambers MG, Knott B (2002) Does the freshwater crayfish Cherax tenuimanus (Smith) [Decap- oda: Parastacidae] regulate tissues zinc concentrations? Freshw Crayfish 13:405–423Google Scholar
  12. Besser JM, Brumbaugh WG, May TW, Church SE, Kimball BA (2001) Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado. Arch Environ Contam Toxicol 40:48–59CrossRefGoogle Scholar
  13. Besser JM, Brumbaugh WG, May TW, Schmitt CJ (2007) Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA. Environ Monit Assess 129:227–241CrossRefGoogle Scholar
  14. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341CrossRefGoogle Scholar
  15. Bianchi N, Fortino S, Leonzio C, Ancora S (2011) Ecotoxicological study on lead shot from hunting in the Padule di Fucecchio marsh (Tuscany, Italy). Chem Ecol 27:153–166CrossRefGoogle Scholar
  16. Bowen L, Werner I, Johnson ML (2006) Physiological and behavioral effects of zinc and temperature on coho salmon (Oncorhynchus kisutch). Hydrobiologia 559:161–168CrossRefGoogle Scholar
  17. Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257CrossRefGoogle Scholar
  18. Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263CrossRefGoogle Scholar
  19. Caravati E, Callieri C, Modenutti BE, Corno G, Balseiro EG, Bertoni R, Michaud L (2010) Picocyanobacterial assemblages in ultraoligotrophic Andean lakes reveal high regional microdiversity. J Plankton Res 32:357–366CrossRefGoogle Scholar
  20. Cardwell RD, DeForest DK, Brix KV, Adams WJ (2013) Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? Rev Environ Contam Toxicol 226:101–122Google Scholar
  21. Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45(7):1525–1536CrossRefGoogle Scholar
  22. Ciancio JE, Pascual M (2006) Energy density of freshwater Patagonian aquatic ecosystem organisms. Ecol Austral 16:91–94Google Scholar
  23. Comby E, Le Lay YF, Piégay H (2014) How chemical pollution becomes a social problem. Risk communication and assessment through regional newspapers during the management of PCB pollution of the Rhone River (France). Sci Total Environ 482-483:100–115CrossRefGoogle Scholar
  24. Croteau MN, Luoma SN, Stewart AR (2005) Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnol Oceanogr 50:1511–1519CrossRefGoogle Scholar
  25. Daga R, Ribeiro Guevara S, Poiré D, Arribére MA (2014) Characterization of dispersed volcanic products generated in recent events in the Northern Patagonia Andean Range: volcanoes Calbuco (1961) and Chaitén (2008), and Puyehue–Cordón Caulle complex (1960 and 2011). J S Am Earth Sci 49:1–14CrossRefGoogle Scholar
  26. Díaz MM, Pedrozo FL, Temporetti PF (1998) Phytoplankton of two Araucanian lakes of differing trophic status (Argentina). Hydrobiologia 369(370):45–57CrossRefGoogle Scholar
  27. Díaz MM, Pedrozo FL, Reynolds CS, Temporetti PF (2007) Chemical composition and the nitrogen—regulated trophic state of Patagonian lakes. Limnologica 37:17–27CrossRefGoogle Scholar
  28. Everall NC, Macfarlane NAA, Sedgwick RW (1989) The interactions of water hardness and pH with the acute toxicity of zinc to the brown trout, Salmo trutta L. J Fish Biol 35:27–36CrossRefGoogle Scholar
  29. Eisler R (1981) Trace metal concentrations in marine organisms. Pergamon Press, New York 687 pp Google Scholar
  30. Eisler R (1984) Trace metal changes associated with age of marine vertebrates. Biol Trace Elem Res 6:165–180CrossRefGoogle Scholar
  31. Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Contaminant Hazard Reviews, Biological Report 10. U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center. Laurel, MD 20708, USAGoogle Scholar
  32. Eisler R, LaRoche G (1972) Elemental composition of the estuarine teleost Fundulus heteroclitus (L). J Exp Mar Biol Ecol 9:29–42CrossRefGoogle Scholar
  33. Farag AM, Boese CJ, Woodward DF, Bergman HL (1994) Physiological changes and tissue metal accumulation in rainbow trout exposed to foodborne and waterborne metals. Environ Toxicol Chem 13:2021–2029CrossRefGoogle Scholar
  34. Grady JR, Johnson AG, Sanders M (1989) Heavy metal content in otoliths of king mackerel (Scomberomorus cavalla) in relation to body length and age. Contrib Mar Sci 81:17–23Google Scholar
  35. Hardy RW, Sullivan CV, Koziol AM (1987) Absorption, body distribution, and excretion of dietary zinc by rainbow trout (Salmo gairdneri). Fish Physiol Biochem 3:133–143CrossRefGoogle Scholar
  36. Hogstrand C (2012) Zinc. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of essential metals. Fish Phisiology Vol 31. Academic Press, London, pp 135–200Google Scholar
  37. Holcombe GW, Benoit DA, Leonard EN (1979) Long-term effects of zinc exposures on brook trout (Salvelinus fontinalis). Trans Am Fish Soc 108:76–87CrossRefGoogle Scholar
  38. Jara-Marini ME, Soto-Jiménez MF, Páez-Osuna F (2009) Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere 77:1366–1373CrossRefGoogle Scholar
  39. Jardine TD, Kidd KA, Fisk AT (2006) Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ Sci Technol 40:7501–7511CrossRefGoogle Scholar
  40. Juárez A, Arribére MA, Arcagni M, Williams N, Rizzo A, Ribeiro Guevara S (2016) Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. Environ Sci Pollut Res 23(18):17995–18009CrossRefGoogle Scholar
  41. Juncos R, Beauchamp DA, Vigliano PH (2013) Modeling prey consumption by native and non-native piscivorous fishes: implications for competition and impacts on shared prey in an ultra-oligotrophic lake in Patagonia. Trans Am Fish Soc 142:268–281CrossRefGoogle Scholar
  42. Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324–337CrossRefGoogle Scholar
  43. Kouba A, Buřič M, Kozák P (2010) Bioaccumulation and effects of heavy metals in crayfish: a review. Water Air Soil Pollut 211:5–16CrossRefGoogle Scholar
  44. Lallement ME, Juárez SM, Macchi PJ, Vigliano PH (2014) Puyehue Cordón-Caulle: post-eruption analysis of changes in stream benthic fauna of Patagonia. Ecol Austral 24:64–74Google Scholar
  45. Lara LE, Moreno H, Naranjo JA, Matthews S, Pérez de Arce C (2006) Magmatic evolution of the Puyehue–Cordón Caulle volcanic complex (40°S), southern Andean volcanic zone: from shield to unusual rhyolitic fissure volcanism. J Volcanol Geotherm Res 157:343–366CrossRefGoogle Scholar
  46. Lucci M (2015) Abundancia, distribución y aspectos biológicos de los decápodos Aegla riolimayana y Samastacus spinifrons en el Lago Nahuel Huapi. MSc thesis. Universidad Nacional del Comahue, Centro Regional Universitario BarilocheGoogle Scholar
  47. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Bio- dynamics as a unifying concept. Environ Sci Technol 39:1921–1931CrossRefGoogle Scholar
  48. Macchi PJ, Cussac VE, Alonso MF, Denegri MA (1999) Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in northern Patagonia. Ecol Freshw Fish 8:227–236Google Scholar
  49. Macchi PJ, Pascual MA, Vigliano PH (2007) Differential piscivory of the native Percichthys trucha and exotic salmonids upon the native forage fish Galaxias maculatus in Patagonian Andean lakes. Limnologica 37:76–87Google Scholar
  50. Masciocchi M, Pereira AJ, Lantschner MV, Corley JC (2013) Of volcanoes and insects: the impact of the Puyehue-Cordon Caulle ash-fall on populations of invasive social wasps, Vespula spp. Ecol Res 28:199–205CrossRefGoogle Scholar
  51. Markert B, Pedrozo F, Geller W, Friese K, Korhammer S, Baffico G, Díaz M (1997) A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Sci Total Environ 206:l–15CrossRefGoogle Scholar
  52. Martίn-Dίaz ML, Tuberty SR, Mckenney CL Jr, Blasco J, Sarasquete C, Delvalls TA (2006) The use of bioaccumulation, biomarkers and histopathology diseases in Procambarus clarkii to establish bioavailability of Cd and Zn after amining spill. Environ Monit Assess 116:169–184CrossRefGoogle Scholar
  53. Mathis BJ, Cummings TF (1973) Selected elements in sediments, water and biota in the Illinois River. J Water Pollut Contam Fed 45:1573–1583Google Scholar
  54. Mendoza-Carranza M, Sepúlveda-Lozada A, Dias-Ferreira C, Geissen V (2016) Distribution and bioconcentration of heavy metals in a tropical aquatic food web: a case study of a tropical estuarine lagoon in SE Mexico. Environ Pollut 210:155–165CrossRefGoogle Scholar
  55. Modenutti BE, Balseiro EG, Elser JJ, Bastidas Navarro M, Cuassolo F, Laspoumaderes C, Souza S, Díaz M, Villanueva V (2013) Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol Oceanogr 58:1165–1175CrossRefGoogle Scholar
  56. Mohamed EHA, Osman AR (2014) Heavy metals concentration in water, muscles and gills of Oreochromis niloticus collected from the sewage-treated water and the White Nile. Int J Aquacult 4:36–42Google Scholar
  57. Murphy BR, Atchison GJ, McIntosh AW (1978) Cadmium and zinc content of fish from an industrially contaminated lake. J Fish Biol 13:327–335CrossRefGoogle Scholar
  58. Nfon E, Cousins IT, Järvinen O, Mukherjee AB, Verta M, Broman D (2009) Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. Sci Total Environ 407:6267–6274CrossRefGoogle Scholar
  59. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49CrossRefGoogle Scholar
  60. Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V (2004) Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int 30:357–362CrossRefGoogle Scholar
  61. Patric FM, Loutit M (1978) Passage of metals to freshwater fish from their food. Water Res 12:395–398CrossRefGoogle Scholar
  62. Pentreath PJ (1976) Some further studies on the accumulation and retention of Zn-65 and Mn-54 by the plaice (Pleuronectes platessa). J Exp Mar Biol Ecol 21:179–189CrossRefGoogle Scholar
  63. Perez Catán S, Juárez NA, Bubach DF (2016) Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue–Cordón Caulle eruption. Environ Sci Pollut Res 23:20700–20710CrossRefGoogle Scholar
  64. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  65. Rechencq MA, Sosnovsky PJ, Macchi P, Alvear A, Vigliano PH (2011) Extensive diel fish migrations in a deep ultraoligotrophic lake of Patagonia Argentina. Hydrobiologia 658:147–161CrossRefGoogle Scholar
  66. Reissig M, Queimaliños C, Modenutti B, Balseiro E (2015) Prey C:P ratio and phosphorus recycling by a planktivorous fish: advantages of fish selection towards pelagic cladocerans. Ecol Freshw Fish 24(2):214–224CrossRefGoogle Scholar
  67. Ribeiro Guevara S, Rizzo A, Sánchez R, Arribére MA (2005) Heavy metal inputs in Northern Patagonia lakes from short sediment cores analysis. J Radioanal Nucl Chem 265(3):481–493CrossRefGoogle Scholar
  68. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22(2):81–114CrossRefGoogle Scholar
  69. Rosser BWC, George JC (1986) Molt-induced muscle atrophy decreases the zinc content of the pectoralis of the giant Canada goose (Branta canadensis maxima). Experientia 42:549–550CrossRefGoogle Scholar
  70. Ruggieri F, Fernández-Turiel JL, Saavedra J, Gimeno D, Polanco E, Naranjo JA (2011) Environmental geochemistry of recent volcanic ashes from the Southern Andes. Environ Chem 8:236–247CrossRefGoogle Scholar
  71. Saiki MK, Castleberry DT, May TW, Martin BA, Bullard FN (1995) Copper, cadmium, and zinc concentrations in aquatic food chains from the upper Sacramento river (California) and selected tributaries. Arch Environ Contam Toxicol 29(4):484–491CrossRefGoogle Scholar
  72. Singh SM, Ferns PN (1978) Accumulation of heavy metals in rainbow trout (Salmo gairdneri) maintained on a diet containing activated sewage sludge. J Fish Biol 13:279–286CrossRefGoogle Scholar
  73. Solbe JF, Flook VA (1975) Studies on the toxicity of zinc sulphate and of cadmium sulphate to stone loach Noemacheilus barbatulus (L) in hard water. J Fish Biol 7:631–637CrossRefGoogle Scholar
  74. Spear PA (1981) Zinc in aquatic environment: chemistry, distribution, and toxicology. National Research Council of Canada, Environmental Secretariat Publication 17589, Publications NRCC/CNRC, OttawaGoogle Scholar
  75. Spry DJ, Hodson PV, Wood CM (1988) Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 45:32–41CrossRefGoogle Scholar
  76. Sternlieb I (1988) Copper and zinc. In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology. Second edition. Raven Press, New York, pp 525–533Google Scholar
  77. Thompson ED, Mayer GD, Walsh PJ, Hogstrand C (2002) Sexual maturation and reproductive zinc physiology in the female squirrelfish. J Exp Biol 205:3367–3376Google Scholar
  78. Thompson ED, Mayer GD, Balesaria S, Glover CN, Walsh PJ, Hogstrand C (2003) Physiology and endocrinology of zinc accumulation during the female squirrelfish reproductive cycle. Comp Biochem Physiol A 134:819–828CrossRefGoogle Scholar
  79. Wiener JG, Giesy Jr JP (1979) Concentrations of Cd, Cu, Mn, Pb and Zn in fishes in a highly organic softwater pond. J Fish Res Board Can 36:270–279CrossRefGoogle Scholar
  80. Wolinski L, Laspoumaderes C, Bastidas Navarro M, Modenutti B, EG B (2013) The susceptibility of cladocerans in North Andean Patagonian lakes to volcanic ashes. Freshw Biol 58:1878–1888CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Análisis por Activación NeutrónicaCentro Atómico Bariloche, CNEABarilocheArgentina
  2. 2.Centro Científico Tecnológico CONICET Patagonia NorteBarilocheArgentina
  3. 3.Instituto Balseiro, Universidad Nacional de Cuyo and Comisión Nacional de Energía AtómicaBarilocheArgentina
  4. 4.Faculty of ScienceSaint Mary’s UniversityHalifaxCanada

Personalised recommendations