Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15529–15540 | Cite as

Mancozeb exposure results in manganese accumulation and Nrf2-related antioxidant responses in the brain of common carp Cyprinus carpio

  • Dennis Guilherme Costa-Silva
  • Andressa Rubim Lopes
  • Illana Kemmerich Martins
  • Luana Paganotto Leandro
  • Mauro Eugênio Medina Nunes
  • Nelson Rodrigues de Carvalho
  • Nathane Rosa Rodrigues
  • Giulianna Echeveria Macedo
  • Ana Paula Saidelles
  • Cassiana Aguiar
  • Morgana Doneda
  • Erico Marlon Moraes Flores
  • Thais Posser
  • Jeferson Luis Franco
Research Article

Abstract

Manganese (Mn)-containing dithiocarbamates such as Mancozeb (MZ) have been shown to induce oxidative stress-related toxicity in rodents and humans. However, little is known about the neurotoxic effects induced by MZ in fish. In this study, carp (Cyprinus carpio) were exposed to non-lethal waterborne concentrations of MZ, and oxidative stress parameters as well as metal accumulation in fish brains were evaluated. The experimental groups were as follows: control, MZ 5 mg/L, and MZ 10 mg/L. Fish were exposed for 7 days, and then brain was removed and prepared for subsequent analysis of antioxidant enzymes, reactive oxygen species (ROS), and expression of Nrf2 and phosphoNrf2. In parallel, manganese (Mn) levels were evaluated in blood and brain tissues. Mn levels were significantly increased in blood and brain of MZ-exposed carps. In addition, a concentration-dependent increase (p < 0.05) in ROS levels was observed in parallel to increments (p < 0.05) in the activity of major antioxidant enzymes, such as GPx, GR, and GST. On the other hand, significant decreases (p < 0.05) in CAT and SOD activities were observed. The expression of total and phosphorylated forms of Nrf2 was significantly (p < 0.05) upregulated in the brain of carps exposed to Mz when compared to the control, indicating an activation of the Nrf2 antioxidant pathway. Our study showed for the first time the activation of the Nrf2/ARE pathway and bioaccumulation of Mn induced by MZ exposure in fish species, highlighting important mechanisms of action and its toxicological impacts to aquatic organisms.

Keywords

Mancozeb Carp fish Cyprinus carpio Dithiocarbamate Manganese Bioaccumulation Antioxidant responses 

Notes

Funding information

The authors received financial support from the Brazilian agencies CNPq (310861/2014-4) and FAPERGS (16/2551-0000499-4).

Compliance with ethical standards

Animal experimentation in this study fully adhered to the National Institute of Health Guide for Care and Use of Laboratory and the protocols were approved by the Ethics Commission on Animal Use of the Federal University of Pampa under process number 043/2013.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  2. Al-Alam J, Bom L, Chbani A et al (2017) Analysis of dithiocarbamate fungicides in vegetable matrices using HPLC-UV followed by atomic absorption spectrometry. J Chromatogr Sci 55:429–435.  https://doi.org/10.1093/chromsci/bmw198 Google Scholar
  3. Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish. Fish Physiol Biochem 34:61–69.  https://doi.org/10.1007/s10695-007-9147-4
  4. Atamaniuk TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI (2014) The Mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney. Environ Toxicol 29:1227–1235.  https://doi.org/10.1002/tox.21853 Google Scholar
  5. Bisson M, Hontela A (2002) Cytotoxic and endocrine-disrupting potential of atrazine, diazinon, endosulfan, and mancozeb in adrenocortical steroidogenic cells of rainbow trout exposed in vitro. Toxicol Appl Pharmacol 180:110–117.  https://doi.org/10.1006/taap.2002.9377 CrossRefGoogle Scholar
  6. Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278:44675–44682.  https://doi.org/10.1074/jbc.M307633200 CrossRefGoogle Scholar
  7. Calviello G, Piccioni E, Boninsegna A et al (2006) DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol Appl Pharmacol 211:87–96.  https://doi.org/10.1016/j.taap.2005.06.001 CrossRefGoogle Scholar
  8. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490CrossRefGoogle Scholar
  9. Grisolia CK (2005) Agrotóxicos: Mutações. Câncer e Reprodução, BrasíliaGoogle Scholar
  10. Chen CT, Green JT, Orr SK, Bazinet RP (2008) Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fatty Acids 79:85–91.  https://doi.org/10.1016/j.plefa.2008.09.003 CrossRefGoogle Scholar
  11. Chtourou Y, Fetoui H, Sefi M, Trabelsi K, Barkallah M, Boudawara T, Kallel H, Zeghal N (2010) Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. Biometals Int J Role MetiIons Biol Biochem Med 23:985–996.  https://doi.org/10.1007/s10534-010-9345-x Google Scholar
  12. Coronado GD, Thompson B, Strong L, Griffith WC, Islas I (2004) Agricultural task and exposure to organophosphate pesticides among farmworkers. Environ Health Perspect 112:142–147CrossRefGoogle Scholar
  13. Costa-Silva DG, Nunes MEM, Wallau GL, Martins IK, Zemolin APP, Cruz LC, Rodrigues NR, Lopes AR, Posser T, Franco JL (2015) Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. Environ Sci Pollut Res Int 22:15526–15535.  https://doi.org/10.1007/s11356-015-4737-7 CrossRefGoogle Scholar
  14. Dolci GS, Vey LT, Schuster AJ, Roversi K, Roversi K, Dias VT, Pase CS, Barcelos RCS, Antoniazzi CTD, Golombieski JI, Glanzner WG, Anezi Junior PA, Gonçalves PBD, Nunes MAG, Dressler VL, Baldisserotto B, Burger ME (2014) Hypoxia acclimation protects against oxidative damage and changes in prolactin and somatolactin expression in silver catfish (Rhamdia quelen) exposed to manganese. Aquat Toxicol 157:175–185.  https://doi.org/10.1016/j.aquatox.2014.10.015 CrossRefGoogle Scholar
  15. Easton A, Guven K, de Pomerai DI (2001) Toxicity of the dithiocarbamate fungicide mancozeb to the nontarget soil nematode, Caenorhabditis elegans. J Biochem Mol Toxicol 15:15–25CrossRefGoogle Scholar
  16. Fitsanakis VA, Amarnath V, Moore JT, et al (2002) Catalysis of catechol oxidation by metaldithiocarbamate complexes in pesticides. Free Radic Biol Med 33:1714–1723Google Scholar
  17. Fuentes-Rios D, Orrego R, Rudolph A, Mendoza G, Gavilán JF, Barra R (2005) EROD activity and biliary fluorescence in Schroederichthys chilensis (Guichenot 1848): biomarkers of PAH exposure in coastal environments of the South Pacific Ocean. Chemosphere 61:192–199.  https://doi.org/10.1016/j.chemosphere.2005.02.062 CrossRefGoogle Scholar
  18. Gabriel D, Riffel APK, Finamor IA, Saccol EMH, Ourique GM, Goulart LO, Kochhann D, Cunha MA, Garcia LO, Pavanato MA, Val AL, Baldisserotto B, Llesuy SF (2013) Effects of subchronic manganese chloride exposure on tambaqui (Colossoma macropomum) tissues: oxidative stress and antioxidant defenses. Arch Environ Contam Toxicol 64:659–667.  https://doi.org/10.1007/s00244-012-9854-4 CrossRefGoogle Scholar
  19. Garcinuño RM, Ramos L, Fernández-Hernando P, Cámara C (2004) Optimization of a matrix solid-phase dispersion method with subsequent clean-up for the determination of ethylene bisdithiocarbamate residues in almond samples. J Chromatogr A 1041:35–41CrossRefGoogle Scholar
  20. Geissen V, Ramos FQ, de J. Bastidas-Bastidas P, Díaz-González G, Bello-Mendoza R, Huerta-Lwanga E, Ruiz-Suárez LE (2010) Soil and water pollution in a banana production region in tropical Mexico. Bull Environ Contam Toxicol 85:407–413.  https://doi.org/10.1007/s00128-010-0077-y CrossRefGoogle Scholar
  21. Glisic B, Mihaljevic I, Popovic M, et al (2015) Characterization of glutathione-S-transferases in zebrafish (Danio rerio). Aquat Toxicol Amst Neth 158:50–62.  https://doi.org/10.1016/j.aquatox.2014.10.013
  22. Goldoni A, da Silva LB (2012) Mutagenic potential of the fungicide mancozeb in astyanax jacuhiensis (Teleostei: Characidae). ResearchGate 28:297–301Google Scholar
  23. Gustafsson KH, Thompson RA (1981) High-pressure liquid chromatographic determination of fungicidal dithiocarbamates. J Agric Food Chem 29:729–732CrossRefGoogle Scholar
  24. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405CrossRefGoogle Scholar
  25. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322.  https://doi.org/10.1104/pp.106.077073 CrossRefGoogle Scholar
  26. Harrison Brody A, Chou E, Gray JM, Pokyrwka NJ, Raley-Susman KM (2013) Mancozeb-induced behavioral deficits precede structural neural degeneration. Neurotoxicology 34:74–81.  https://doi.org/10.1016/j.neuro.2012.10.007 CrossRefGoogle Scholar
  27. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
  28. Hoffman L, Hardej D (2012) Ethylene bisdithiocarbamate pesticides cause cytotoxicity in transformed and normal human colon cells. Environ Toxicol Pharmacol 34:556–573.  https://doi.org/10.1016/j.etap.2012.06.015 CrossRefGoogle Scholar
  29. Hogarth G (2012) Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev Med Chem 12:1202–1215CrossRefGoogle Scholar
  30. Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208CrossRefGoogle Scholar
  31. Houeto P, Bindoula G, Hoffman JR (1995) Ethylenebisdithiocarbamates and ethylenethiourea: possible human health hazards. Environ Health Perspect 103:568–573CrossRefGoogle Scholar
  32. Jarrard HE, Delaney KR, Kennedy CJ (2004) Impacts of carbamate pesticides on olfactory neurophysiology and cholinesterase activity in coho salmon (Oncorhynchus kisutch). Aquat Toxicol Amst Neth 69:133–148.  https://doi.org/10.1016/j.aquatox.2004.05.001 CrossRefGoogle Scholar
  33. Jena BS, Nayak SB, Patnaik BK (1998) Age-related changes in catalase activity and its inhibition by manganese (II) chloride in the brain of two species of poikilothermic vertebrates. Arch Gerontol Geriatr 26:119–129CrossRefGoogle Scholar
  34. Keppler D (1999) Export pumps for glutathione S-conjugates. Free Radic Biol Med 27:985–991Google Scholar
  35. Kostyuk VA, Potapovich AI (1989) Superoxide-driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 19:1117–1124Google Scholar
  36. Kubrak OI, Atamaniuk TM, Husak VV, Drohomyretska IZ, Storey JM, Storey KB, Lushchak VI (2012) Oxidative stress responses in blood and gills of Carassius auratus exposed to the mancozeb-containing carbamate fungicide tattoo. Ecotoxicol Environ Saf 85:37–43.  https://doi.org/10.1016/j.ecoenv.2012.08.021 CrossRefGoogle Scholar
  37. Kontou S, Tsipi D, Oreopoulou V, Tzia C (2001) Determination of ETU in tomatoes and tomato products by HPLC-PDA: evaluation of cleanup procedures. J Agric Food Chem 49:1090–1097CrossRefGoogle Scholar
  38. Larsson KS, Arnander C, Cekanova E, Kjellberg M (1976) Studies of teratogenic effects of the dithiocarbamates maneb, mancozeb, and propineb. Teratology 14:171–183.  https://doi.org/10.1002/tera.1420140208 CrossRefGoogle Scholar
  39. López-Fernández O, Pose-Juan E, Rial-Otero R, Simal-Gándara J (2017) Effects of hydrochemistry variables on the half-life of mancozeb and on the hazard index associated to the sum of mancozeb and ethylenethiourea. Environ Res 154:253–260.  https://doi.org/10.1016/j.envres.2017.01.016 CrossRefGoogle Scholar
  40. Marques A, Rego A, Guilherme S, Gaivão I, Santos MA, Pacheco M (2016) Evidences of DNA and chromosomal damage induced by the mancozeb-based fungicide Mancozan(®) in fish (Anguilla anguilla L.) Pestic Biochem Physiol 133:52–58.  https://doi.org/10.1016/j.pestbp.2016.03.004 CrossRefGoogle Scholar
  41. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295.  https://doi.org/10.1074/jbc.R900010200 CrossRefGoogle Scholar
  42. Nunes ME, Müller TE, Braga MM, et al (2017) Chronic Treatment with Paraquat Induces Brain Injury, Changes in Antioxidant Defenses System, and Modulates Behavioral Functions in Zebrafish. Mol Neurobiol 54:3925–3934.  https://doi.org/10.1007/s12035-016-9919-x
  43. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426CrossRefGoogle Scholar
  44. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  45. Pérez-Severiano F, Rodríguez-Pérez M, Pedraza-Chaverrí J, Maldonado PD, Medina-Campos ON, Ortíz-Plata A, Sánchez-García A, Villeda-Hernández J, Galván-Arzate S, Aguilera P, Santamaría A (2004) S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 45:1175–1183.  https://doi.org/10.1016/j.neuint.2004.06.008 CrossRefGoogle Scholar
  46. Rath NC, Rasaputra KS, Liyanage R, et al (2011) Dithiocarbamate toxicity—an appraisal. Pestic Mod World-Eff Pestic Expo Ed M Stoytcheva InTech Publ Online N Y 323–340Google Scholar
  47. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9CrossRefGoogle Scholar
  48. Schülke S, Dreidax D, Malik A, Burmester T, Nevo E, Band M, Avivi A, Hankeln T (2012) Living with stress: regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax. Gene 500:199–206.  https://doi.org/10.1016/j.gene.2012.03.019 CrossRefGoogle Scholar
  49. Singh DA, Srivastava DP (2013) In-vivo study of effects of dithiocarbamates fungicide (Mancozeb) and its metabolite ethylenethiourea (ETU) on fresh water fish Clarius batrachus. J Biol Earth Sci 3:228–235Google Scholar
  50. Steffens W, Wirth M (2004) Freshwater fish - An important source of n-3 polyunsaturated fatty acids: a reviewGoogle Scholar
  51. Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res Rev ras Pesqui Medicas E Biol 29:1715–1733Google Scholar
  52. Tanito M, Agbaga M-P, Anderson RE (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med 42:1838–1850.  https://doi.org/10.1016/j.freeradbiomed.2007.03.018 CrossRefGoogle Scholar
  53. U.S. EPA. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. U.S. Environmental Protection Agency, Washington, DC, EPA/630/R-03/003F, 2005Google Scholar
  54. Valentine HL, Amarnath K, Amarnath V, Valentine WM (2006) Dietary copper enhances the peripheral myelinopathy produced by oral pyrrolidine dithiocarbamate. Toxicol Sci Off J Soc Toxicol 89:485–494.  https://doi.org/10.1093/toxsci/kfj047 CrossRefGoogle Scholar
  55. Vieira MC, Torronteras R, Córdoba F, Canalejo A (2012) Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotoxicol Environ Saf 78:212–217.  https://doi.org/10.1016/j.ecoenv.2011.11.015 CrossRefGoogle Scholar
  56. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefGoogle Scholar
  57. Williams C-A, Lin Y, Maynard A, Cheng S-Y (2013) Involvement of NF kappa B in potentiated effect of Mn-containing dithiocarbamates on MPP(+) induced cell death. Cell Mol Neurobiol 33:815–823.  https://doi.org/10.1007/s10571-013-9948-1 CrossRefGoogle Scholar
  58. Zizza M, Di Lorenzo M, Laforgia V et al (2017) HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost. Toxicol Appl Pharmacol 323:26–35.  https://doi.org/10.1016/j.taap.2017.03.018 CrossRefGoogle Scholar
  59. Xu S (2000) Environmental fate of ethylenethiourea. Department of Pesticide Regulation, Sacramento 10 p. http:// www.cdpr.ca.gov/docs/emon/pubs/fatememo/etu.pdf. Accessed 4 Jul 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dennis Guilherme Costa-Silva
    • 1
  • Andressa Rubim Lopes
    • 1
  • Illana Kemmerich Martins
    • 1
  • Luana Paganotto Leandro
    • 1
  • Mauro Eugênio Medina Nunes
    • 1
  • Nelson Rodrigues de Carvalho
    • 1
  • Nathane Rosa Rodrigues
    • 1
  • Giulianna Echeveria Macedo
    • 1
  • Ana Paula Saidelles
    • 1
  • Cassiana Aguiar
    • 1
  • Morgana Doneda
    • 2
  • Erico Marlon Moraes Flores
    • 2
  • Thais Posser
    • 1
  • Jeferson Luis Franco
    • 1
  1. 1.Campus São GabrielUniversidade Federal do PampaSão GabrielBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations