Abstract
Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate’s internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
This is a preview of subscription content,
to check access.

References
Adams WJ, Biddinger GR, Robillard KA, Gorsuch JW (1995) A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ Toxicol Chem 14:1569–1574
Ahmed AU, Alexiades NG, Lesniak MS (2010) The use of neural stem cells in cancer gene therapy: predicting the path to the clinic. Curr Opin Mol Ther 12:546–552
Alaiti MA, Ishikawa M, Costa MA (2010) Bone marrow and circulating stem/progenitor cells for regenerative cardiovascular therapy. Transl Res 156:112–129. https://doi.org/10.1016/j.trsl.2010.06.008
ATSDR (1995) Toxicological profile for diethylphthalate. Agency for Toxic Substances and Disease, Atlanta
ATSDR (2001) Toxicological profile for di-n-butyl phthalate. Agency for Toxic Substances and Disease, Atlanta
ATSDR (1997) Toxicological profile for di-n-octylphthalate. Agency for Toxic Substances and Disease Registry, Atlanta
Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kawamata M, Kato T, Okochi H, Ochiya T (2008) IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26:2705–2712. https://doi.org/10.1634/stemcells.2008-0034
Bang DY, Lee IK, Lee BM (2011) Toxicological characterization of phthalic acid. Toxicol Res 27:191–203. https://doi.org/10.5487/TR.2011.27.4.191
Bell FP, Gillies PJ (1977) Effect of dietary di-2-ethylhexyl phthalate on oxidation of 14 C-palmitoyl CoA by mitochondria from mammalian heart and liver. Lipids 12(7):581–585
Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA (2017) Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater 340:360–383. https://doi.org/10.1016/j.jhazmat.2017.06.036
Bhattacharya N, Dufour JM, Vo M-N, Okita J, Okita R, Kim KH (2005) Differential effects of phthalates on the testis and the liver. Biol Reprod 72:745–754. https://doi.org/10.1095/biolreprod.104.031583
Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58:593–608. https://doi.org/10.1016/j.jhep.2012.12.005
Bursch W, Lauer B, Timmermann-Trosiener T, Barthel G, Schuppler J, Schulte-Hermann R (1984) Controlled cell death (apoptosis) of normal and putative neoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis 5:53–58
Cantz T, Manns MP, Ott M (2008) Stem cells in liver regeneration and therapy. Cell Tissue Res 331:271–282. https://doi.org/10.1007/s00441-007-0483-6
Chang YJ, Liu JW, Lin PC, Sun LY, Peng CW, Luo GH, Chen TM, Lee RP, Lin SZ, Harn HJ, Chiou T (2009) Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci 85:517–525
Chen CC, Wang YH, Wang SL, Huang PC, Chuang SC, Chen MH, Chen BH, Sun CW, Fu HC, Lee CC, Wu MT, Chen ML, Hsiung CA (2017) Exposure sources and their relative contributions to urinary phthalate metabolites among children in Taiwan. Int J Hyg Environ Health 220:869–879. https://doi.org/10.1016/j.ijheh.2017.04.002
CSTEE (Scientific Committe on Toxicity E and TE) (1998) Phthalate migration from soft PVC toys and child-care articles. Opinion expressed at the CSTEE third plenary meeting
David RM, Moore MR, Cifone MA, Finney DC, Guest D (1999) Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di (2-ethylhexyl) phthalate and the effects of recovery. Toxicol Sci 50(2):195–205
De Toni L, Tisato F, Seraglia R et al (2017) Phthalates and heavy metals as endocrine disruptors in food: a study on pre-packed coffee products. Toxicol Reports 4:234–239. https://doi.org/10.1016/j.toxrep.2017.05.004
Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, Schapira AH, Gwinn K, Hardy J, Lewis PA, Kunath T (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2:440. https://doi.org/10.1038/ncomms1453
Fan Y, Chen H, Liu H, Wang F, Ma S, Latipa A, Wang S, Wang C (2017) Analysis of phthalate esters in dairy products—a brief review. Anal Methods 9:370–380. https://doi.org/10.1039/C6AY02885C
Frederiksen H, Skakkebæk NE, Andersson AM (2007) Metabolism of phthalates in humans. Mol Nutr Food Res 51:899–911. https://doi.org/10.1002/mnfr.200600243
Gao H, Zhu YD, Xu YY et al (2017) Season-dependent concentrations of urinary phthalate metabolites among Chinese pregnant women: repeated measures analysis. Environ Int 104:110–117. https://doi.org/10.1016/j.envint.2017.03.021
Gerbracht U, Bursch W, Kraus P, Putz B, Reinacher M, Timmermann-Gtrosiener I (1990) Effects off JhypolipMemic drags pUnemotypic expression amd cell off rat liver cloffibrate om in altered foci. 11(4):617–24
Goll V, Alexandre E, Viollon-Abadie C, Nicod L, Jaeck D, Richert L (1999) Comparison of the effects of various peroxisome proliferators on peroxisomal enzyme activities, DNA synthesis, and apoptosis in rat and human hepatocyte cultures. Toxicol Appl Pharmacol 160(1):21–32
Harn HJ, Lin SZ, Hung SH, Subeq YM, Li YS, Syu WS, Ding DC, Lee RP, Hsieh DK, Lin PCCT (2012) Adipose-derived stem cells can abrogate chemical-induced liver fibrosis and facilitate recovery of liver function. Cell Transplant 21:2753–2764
Hasmall SC, James NH, Macdonald N, West D, Chevalier S, Cosulich SC, Roberts RA (1999) Suppression of apoptosis and induction of DNA synthesis in vitro by the phthalate plasticizers monoethylhexylphthalate (MEHP) and diisononylphthalate (DINP): a comparison of rat and human hepatocytes in vitro. Arch Toxicol 73(8–9):451–456
Hasmall SC, Roberts RA (2000) The nongenotoxic hepatocarcinogens diethylhexylphthalate and methylclofenapate induce DNA synthesis preferentially in octoploid rat hepatocytes. Toxicol Pathol 28:503–509
Hauser R (2005) Phthalates and human health. Occup Environ Med 62:806–818. https://doi.org/10.1136/oem.2004.017590
Health Canada (1994) Bis(2- ethylhexyl) phthalate. Priority substances list assessment report. Canadian environmental protection act. Health Canada, Ottawa, p 32
Health Canada (2001) Priority substances list. Assessment report: bis(2-ethylhexyl) phathalate
Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS (2006) Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 44:1478–1486. https://doi.org/10.1002/hep.21441
Higuchi A, Ku N-J, Tseng Y-C, Pan CH, Li HF, Kumar SS, Ling QD, Chang Y, Alarfaj AA, Munusamy MA, Benelli G, Murugan K (2017) Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Investig 97:1–13. https://doi.org/10.1038/labinvest.2017.100
Hinton RH, Mitchell FE, Mann A (1986) Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect 70:195–210
Hurst CH, Waxman DJ (2003) Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol Sci 74(2):297–308
Iimuro Y, Brenner DA (2008) Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res 25:249–258. https://doi.org/10.1007/s11095-007-9311-7
International Agency for Research on Cancer (2000) IARC (International Agency for Research on Cancer) some industrial chemicals IARC Monographs, 77 (2000), pp. 41–148
Ipapo KN, Factor-Litvak P, Whyatt RM, Calafat AM, Diaz D, Perera F, Rauh V, Herbstman JB (2017) Maternal prenatal urinary phthalate metabolite concentrations and visual recognition memory among infants at 27 weeks. Environ Res 155:7–14. https://doi.org/10.1016/j.envres.2017.01.019
Jin SZ, Liu BR, Xu J, Gao FL, Hu ZJ, Wang XH, Pei FH, Hong Y, Hu HY, Han M (2012) Ex vivo-expanded bone marrow stem cells home to the liver and ameliorate functional recovery in a mouse model of acute hepatic injury. Hepatobiliary Pancreat Dis Int 11:66–73
Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, Rizos AK (2016) Review article a global assessment of phthalates burden and related links to health effects. Environ Int 97:212–236. https://doi.org/10.1016/j.envint.2016.09.013
Kim SH, Park MJ (2014) Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab 19:69–75. https://doi.org/10.6065/apem.2014.19.2.69
Kubo N, Narumi S, Kijima H, Mizukami H, Yagihashi S, Hakamada K, Nakane A (2012) Efficacy of adipose tissue-derived mesenchymal stem cells for fulminant hepatitis in mice induced by concanavalin A. J Gastroenterol Hepatol 27:165–172. https://doi.org/10.1111/j.1440-1746.2011.06798.x
Lake BG, Gangolli SD, Grasso P, Lloyd AG (1975) Studies on the hepatic effects of orally administered di-(2-ethylhexyl) phthalate in the rat. Toxicol Appl Pharmacol 32:355–367. https://doi.org/10.1016/0041-008X(75)90226-4
Larsson K, Lindh CH, Jönsson BA et al (2017) Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ Int 102:114–124. https://doi.org/10.1016/j.envint.2017.02.006
Lin SZ, Chang YJ, Liu JW, Chang LF, Sun LY, Li YS, Luo GH, Liao CH, Chen PH, Chen TM, Lee R (2010) Transplantation of human Wharton’s jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant 19:1451–1463
Lloyd AG (1975) Studies on the hepatic effects of orally administered phthalate the rat DEHP has an extremely low order of acute toxicity ( Patty 1967). However, subacute studies in the rat have shown that the oral administration of DEHP leads to liver enlargement. Toxicol Appl 32:355–367
Lu Y, Wang YY, Yang N, Zhang D, Zhang FY, Gao HT, Rong WT, Yu SQ, Xu Q (2014) Food emulsifier polysorbate 80 increases intestinal absorption of di-(2-Ethylhexyl) phthalate in rats. Toxicol Sci 139:317–327. https://doi.org/10.1093/toxsci/kfu055
Maloney EK, Waxman DJ (1999) Trans-activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 161(2):209–218
NTP-CERHR (2000) NTP-CERHR expert panel report on di(2-ethylhexyl) phthalate. NTP-CERHR-DEHP
Oomen AG, van Twillert K, Hofhuis MFA, et al (2003) Development and suitability of in vitro digestion models in assessing bioaccessibility of lead from toy matrices. RIVM Rep 1–38
Pell T, Eliot M, Chen A, Lanphear BP, Yolton K, Sathyanarayana S, Braun JM (2017) Parental concern about environmental chemical exposures and children’s urinary concentrations of phthalates and phenols. J Pediatr 186:138–144.e3. https://doi.org/10.1016/j.jpeds.2017.03.064
Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283(5745):397–398
Rusyn I, Peters JM, Cunningham ML (2006) Effects of DEHP in the liver: modes of action and species- specific differences. Crit Rev Toxicol 36(5):459–479
Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K (2004) Transplantation of bone marrow cells reduces CCl 4-induced liver fibrosis in mice. Hepatology 40:1304–1311. https://doi.org/10.1002/hep.20452
Sakhi AK, Sabaredzovic A, Cequier E, Thomsen C (2017) Phthalate metabolites in Norwegian mothers and children: levels, diurnal variation and use of personal care products. Sci Total Environ 599–600:1984–1992. https://doi.org/10.1016/j.scitotenv.2017.05.109
Sakurai T, Miyazawa S, Hashimoto T (1978) Effects of di-(2-ethylhexyl) phthalate administration on carbohydrate and fatty acid metabolism in rat liver. J Biochem 83(1):313–320
Salomone F, Barbagallo I, Puzzo L, Piazza CVG (2013) Efficacy of adipose tissue-mesenchymal stem cell transplantation in rats with acetaminophen liver injury. Stem Cell Res 11:1037–1044
Sathyanarayana S (2008) Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Care 38:34–49. https://doi.org/10.1016/j.cppeds.2007.11.001
Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29:134–139. https://doi.org/10.1111/j.1365-2605.2005.00567.x
Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393
Seo KW, Kim KB, Kim YJ, Choi JY, Lee KT, Choi KS (2004) Comparison of oxidative stress and changes of xenobiotic metabolizing enzymes induced by phthalates in rats. Food Chem Toxicol 42(1):107–114
Shen G, Zhou L, Liu W, Cui Y, Xie W, Chen H, Li H (2017) Di (2-ethylhexyl) phthalate alters the synthesis and β-oxidation of fatty acids and hinders ATP supply in mouse testes via UPLC-Q-Exactive Orbitrap MS-based Metabonomics study. J Agric Food Chem 65(24):5056–5063
Singh S, Li SS (2011) Genomics phthalates: toxicogenomics and inferred human diseases. Genomics 97:148–157. https://doi.org/10.1016/j.ygeno.2010.11.008
Siqueira RC (2011) Stem cell therapy for retinal diseases: update. Stem Cell Res Ther 2:50. https://doi.org/10.1186/scrt91
Subedi B, Sullivan KD, Dhungana B (2017) Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Environ Pollut 230:701–708. https://doi.org/10.1016/j.envpol.2017.07.028
Sweeney BP, Bromilow J (2006) Liver enzyme induction and inhibition: implications for anaesthesia. Anaesthesia 61:159–177. https://doi.org/10.1111/j.1365-2044.2005.04462.x
Taylor P, Kluwe WM, Haseman JK et al (1982) The carcinogenicity of dietary di ( 2- ethylhexyl ) phthalate ( DEHP ) in fischer 344 rats and B6C3F 1 mice. J Toxicol Environ Heal Curr Issues 10:797–815
Terai S, Sakaida I, Nishina H, Okita K (2005) Lesson from the GFP/CCl4 model—Translational Research Project: the development of cell therapy using autologous bone marrow cells in patients with liver cirrhosis. J Hepato-Biliary-Pancreat Surg 12:203–207. https://doi.org/10.1007/s00534-005-0977-0
Tran TM, Le HT, Minh TB, Kannan K (2017) Occurrence of phthalate diesters in indoor air from several northern cities in Vietnam, and its implication for human exposure. Sci Total Environ 601–602:1695–1701. https://doi.org/10.1016/j.scitotenv.2017.06.016
Tsai P-C, Fu T-W, Chen Y-MA, Ko TL, Chen TH, Shih YH, Hung SC, Fu YS (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplant 15:484–495. https://doi.org/10.1002/lt.21715
USEPA (1991) Di(2-ethylhexyl)phthalate (DEHP). (CASRN 117-81-7): reference dose for chronic oral exposure (RfD). Available: /http://www.epa.gov/iris/subst/0014.html
USEPA (1993) Integrated risk information system (IRIS), dietyl phthalate. National Center for Environmental Assessment. U.S. Environmental Protection Agency. www.epa.gov/iris/subst/0226.html
USEPA (1990) Integrated risk information system (IRIS), 1990. Dibutyl phthalate. /www.epa.gov/iris/subst/0038.htm
Ward JM, Peters JM, Perella CM, Gonzalez FJ (1998) Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptorα-null mice. Toxicol Pathol 26(2):240–246
Winberg LD, Badr MZ (1995) Mechanism of phthalate-induced inhibition of hepatic mitochondrial β-oxidation. Toxicol Lett 76(1):63–69
Wittassek M, Koch HM, Angerer J, Brüning T (2011) Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res 55:7–31
Wu H, Olmsted A, Cantonwine DE, Shahsavari S, Rahil T, Sites C, Pilsner JR (2017) Urinary phthalate and phthalate alternative metabolites and isoprostane among couples undergoing fertility treatment. Environ Res 153:1–7. https://doi.org/10.1016/j.envres.2016.11.003
Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, Zhou H, Mao F (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29:356–365. https://doi.org/10.1111/j.1478-3231.2008.01855.x
Yoshida T (2017) Analytical method for urinary metabolites as biomarkers for monitoring exposure to phthalates by gas chromatography/mass spectrometry. Biomed Chromatogr 31:e3910. https://doi.org/10.1002/bmc.3910
Yuswir NS, Praveena SM, Aris AZ, Hashim Z (2013) Bioavailability of heavy metals using in vitro digestion model: a state of present knowledge. Rev Environ Health 28:181–187. https://doi.org/10.1515/reveh-2013-0012
Zare Jeddi M, Rastkari N, Ahmadkhaniha R, Yunesian M, Nabizadeh R, Daryabeygi R (2015) A margin of exposure approach to assessment of non-cancerous risk of diethyl phthalate based on human exposure from bottled water consumption. Environ Sci Pollut Res 22:19518–19528. https://doi.org/10.1007/s11356-015-5076-4
Zhou D, Wang H, Zhang J (2011) Di-n-butyl phthalate (DBP) exposure induces oxidative stress in epididymis of adult rats. Toxicol Ind Health 27(1):65–71
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Philippe Garrigues
Rights and permissions
About this article
Cite this article
Praveena, S.M., Teh, S.W., Rajendran, R.K. et al. Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration. Environ Sci Pollut Res 25, 11333–11342 (2018). https://doi.org/10.1007/s11356-018-1652-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-018-1652-8