Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15774–15784 | Cite as

Caffeine levels as a predictor of Human mastadenovirus presence in surface waters—a case study in the Sinos River basin—Brazil

  • Giovana Piva Peteffi
  • Juliane Deise Fleck
  • Igor Mendes Kael
  • Viviane Girardi
  • Raquel Bündchen
  • Daiane Metz Krajeski
  • Meriane Demoliner
  • Francini Pereira Silva
  • Débora Couto da Rosa
  • Marina Venzon Antunes
  • Rafael Linden
Research Article
  • 100 Downloads

Abstract

The presence of caffeine in environmental water samples is almost entirely human-related, given that there are virtually no industrial or agricultural releases. Caffeine has already been proposed as an anthropogenic marker for wastewater contamination of surface waters. The aim of this study was to evaluate if caffeine concentrations in water can be a predictor of virological and bacteriological contamination. Water samples were taken at three sampling sites from urban water streams from the hydrographic basin of the Sinos River (Brazil) monthly in the period of May 9th, 2016 to April 11th, 2017 (n = 36). Concentrations of Human mastadenovirus (HAdV-F and HAdV-C), fecal coliforms, and caffeine were measured in all collected samples. Concentrations of caffeine in water were strongly correlated with HAdV-F (rs = 0.704, p = 0.000). This study, for the first time, characterized caffeine concentrations in water as predictors of virus presence, with cut-off values presenting 92.9% specificity and 95.5% sensitivity for HAdV-F and 66.7% specificity and 80% sensitivity for HAdV-C. Considering its marked chemical stability and ease of quantification, caffeine concentrations can be used as a comprehensive marker of human contamination of water resources, also being predictive of bacteriological and virological concentrations.

Keywords

Caffeine Human mastadenovirus Indicator Coliforms Sinos River basin Water quality 

Notes

Acknowledgements

J. D. Fleck has received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to perform this study (process number 454066/2014-7). G. P. Peteffi is recipient of the PhD scholarship of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). R Linden is recipient of a research scholarship of the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq).

Compliance with ethical standards

Conflicts of interests

The authors declare that they have no conflicts of interest.

References

  1. Adefisoye MA, Okoh AI (2016) Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in eastern cape, South Africa. Microbiology 5:143–151Google Scholar
  2. Ávila CLA (2011) Preliminar de Metais Pesados Totais e Biodisponíveis em Profundidade no Sedimento do Arroio Luiz Rau em Novo Hamburgo (RS) Trabalho de Conclusão (“Bacharel em Engenharia Industrial Química”). Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, p 74Google Scholar
  3. Bahlmann A, Carvalho JJ, Weller MG, Panne U, Schneider RJ (2012) Immunoassays as high through put tools: monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere 89:1278–1286CrossRefGoogle Scholar
  4. Barrella KM, Garrafa P, Monezi TA, Hársi CM, Salvi C, Violante PABC, Mehnert DU (2009) Longitudinal study on occurrence of adenoviruses and hepatitis a virus in raw domestic sewage in the city of Limeira, Sao Paulo. Braz J Microbiol 40(1):102–107.  https://doi.org/10.1590/S1517-838220090001000017 CrossRefGoogle Scholar
  5. Benotti MJ, Brownawell BJ (2009) Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environ Pollut 157(3):994–1002.  https://doi.org/10.1016/j.envpol.2008.10.009 CrossRefGoogle Scholar
  6. Bibby K, Peccia J (2013) Prevalence of respiratory adenovirus species B and C in sewage sludge. Environ Sci Process Impacts 15(2):336–338.  https://doi.org/10.1039/c2em30831b CrossRefGoogle Scholar
  7. Buerge IJ, Poiger T, Müller MD, Buser H-R (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37(4):691–700CrossRefGoogle Scholar
  8. Chen Z, Pavelic P, Dillon P, Naidu R (2002) Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Res 36:4830–4838CrossRefGoogle Scholar
  9. CONAMA. Brasil (2005) Conselho Nacional do Meio Ambiente, 2005. Resolução n° 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília, 18 mar. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed 15 Nov 2017
  10. Conte VD, Colombo M, Zanrosso AV et al (2004) Qualidade Microbiológica de Águas Tratadas e Não Tratadas na Região Nordeste do Rio Grande do Sul. Informa 16(11–12):83–84Google Scholar
  11. Rodrigues AS de L, Castro P de TAC (2008) Protocolos de Avaliação Rápida: Instrumentos Complementares no Monitoramento dos Recursos Hídricos. Rev Bras Recur Hídricos 13:161–170Google Scholar
  12. Dong Y, Kim J, Lewis G (2010) Evaluation of methodology for detection of human adenoviruses in wastewater, drinking water, stream water and recreational waters. J Appl Microbiol 108:800–809CrossRefGoogle Scholar
  13. Elmahdy EM, Fongaro G, Schissi CD, Petrucio MM, Barardi CRM (2016) Enteric viruses in surface water and sediment samples from the catchment area of Peri lagoon, Santa Catarina state, Brazil. J Water Health 14(1):142–154CrossRefGoogle Scholar
  14. Ferreira AP (2005) Caffeine as an environmental indicator for assessing urban aquatic ecosystems. Cad Saúde Pública, Río Janeiro 21:1884–1892.  https://doi.org/10.1590/S0102-311X2005000600038 CrossRefGoogle Scholar
  15. Figueiredo J, Drumm E, Rodrigues M, Spilki F (2010) The Rio dos Sinos watershed : an economic and social space and its interface with environmental status. Braz J Biol 70:1131–1136CrossRefGoogle Scholar
  16. Fong TT, Phanikumar MS, Xagoraraki I, Rose JB (2010) Quantitive detection of human adenoviruses in wastewater and combined sewer overflows influencing a Michigan river. Appl Environ Microbiol 76:715–723.  https://doi.org/10.1128/AEM.01316-09 CrossRefGoogle Scholar
  17. Froehner S, Souza DB, Machado KS, Da Rosa EC (2010) Tracking anthropogenic inputs in Barigui River, Brazil using biomarkers. Water Air Soil Pollut 210:33–41.  https://doi.org/10.1007/s11270-009-0220-8 CrossRefGoogle Scholar
  18. Girardi V, Demoliner M, Rigotto C, Schneider VE, Paesi S, Spilki FR (2018) Assessment of diversity of adenovirus DNA polymerase gene in recreational waters facilitated by ultracentrifugal concentration. J Water Health 16(1):102–111.  https://doi.org/10.2166/wh.2017.144 CrossRefGoogle Scholar
  19. Gracia-Lor E, Castiglioni S, Bade R, Been F, Castrignanò E, Covaci A, González-Mariño I, Hapeshi E, Kasprzyk-Hordern B, Kinyua J, Lai FY, Letzel T, Lopardo L, Meyer MR, O'Brien J, Ramin P, Rousis NI, Rydevik A, Ryu Y, Santos MM, Senta I, Thomaidis NS, Veloutsou S, Yang Z, Zuccato E, Bijlsma L (2017) Measuring biomarkers in wastewater as a new source of epidemiological information: current state and future perspectives. Environ Int 99:131–150CrossRefGoogle Scholar
  20. Hamza IA, Jurzik L, Stang A, Sure K, Überla K, Wilhelm M (2009) Detection of human viruses in rivers of a densly-populated area in Germany using a virus adsorption elution method optimized for PCR analyses. Water Res 43:2657–2668.  https://doi.org/10.1016/j.watres.2009.03.020 CrossRefGoogle Scholar
  21. Kurissery S, Kanavillil N, Verenitch S, Mazumder A (2012) Caffeine as an anthropogenicmarker of domestic waste: a study from Lake Simcoe watershed. Ecol Indic 23:501–508CrossRefGoogle Scholar
  22. Lee GC, Jheong WH, Kim MJ, Choi DH, Baik KH (2013) A 5-year survey (2007–2011) of enteric viruses in Korean aquatic environments and the use of coliforms as viral indicators. Microbiol Immunol 57(1):46–53.  https://doi.org/10.1111/j.1348-0421.2012.00515.x CrossRefGoogle Scholar
  23. Liang L, Goh SG, Vergara GG, Fang HM, Rezaeinejad S, Chang SY et al (2015) Alternative fecal indicators and their empirical relationships with enteric viruses, salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment. Appl Environ Microbiol 81:850–860CrossRefGoogle Scholar
  24. Linden R, Antunes MV, Heinzelmann LS, Fleck JD, Staggemeier R, Fabres RB, Vecchia AD, Nascimento CA, Spilki FR (2015) Caffeine as an indicator of human fecal contamination in the Sinos River: a preliminary study. Braz J Biol 75(2):S81–S84CrossRefGoogle Scholar
  25. Lion T (2014) Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev 27:441–462.  https://doi.org/10.1128/CMR.00116-13 CrossRefGoogle Scholar
  26. Lipp EK, Kurz R, Vincent R, Rodriguez-Palacios C, Farrah SR, Rose JB (2001) The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuar Coasts 24(2):266–276CrossRefGoogle Scholar
  27. Loos R, Wollgast J, Huber T, Hanke G (2007) Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in northern Italy. Anal Bioanal Chem 387:1469–1478.  https://doi.org/10.1007/s00216-006-1036-7 CrossRefGoogle Scholar
  28. Magwalivha M, Wolfaardt M, Kiulia NM, van Zyl WB, Mwenda JM, Taylor MB (2010) High prevalence of species D human adenoviruses in fecal specimens from urban Kenyan children with diarrhea. J Med Virol 82(1):77–84.  https://doi.org/10.1002/jmv.21673 CrossRefGoogle Scholar
  29. Maluquer de Motes C, Clemente-Casares P, Hundesa A, Martín M, Girones R (2004) Detection of bovine and porcine adenovirus for tracing the source of fecal contamination. Appl Environ Microbiol 70(3):1448–1454CrossRefGoogle Scholar
  30. Martínez-Bueno MJ, Uclés S, Hernando MD, Davoli E, Fernández-Alba AR (2011) Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant. Water Res 45:2331–2341.  https://doi.org/10.1016/j.watres.2011.01.011 CrossRefGoogle Scholar
  31. Meals DW, Harcum JB, Dressing AS (2013) Monitoring for microbial pathogens and indicators. http://www.bae.ncsu.edu/programs/extension/wqg/319monitoring/TechNotes/technotes9_monitoring_microbial_pathogens.pdf. Accessed 15 Nov 2017
  32. Mena KD, Gerba CP (2009) Waterborne adenovirus. Rev Environ Contam Toxicol 198:133–167.  https://doi.org/10.1007/978-0-387-09647-6_ Google Scholar
  33. Montagner CC, Jardim WF (2011) Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, Sao Paulo state (Brazil). J Braz Chem Soc 22:1452–1462.  https://doi.org/10.1590/S0103-50532011000800008 CrossRefGoogle Scholar
  34. Naime R, Nascimento CA (2009) Monitoramento físico-químico e microbiológico das águas do arroio pampa em Novo Hamburgo – RS. Engenharia Ambiental - Espírito Santo do Pinhal 6(2):410–432Google Scholar
  35. Ogorzaly L, Walczak C, Galloux M, Etienne S, Gassiloud B, Cauchie HM (2015) Human adenovirus diversity in water samples using a next-generation amplicon sequencing approach. Food Environ Virol 7(2):112–121.  https://doi.org/10.1007/s12560-015-9194-4 CrossRefGoogle Scholar
  36. Peeler KA, Opsahl SP, Chanton JP (2006) Tracking anthropogenic inputs using caffeine, indicator bacteria, and nutrients in rural freshwater and urban marine systems. Environ Sci Technol 40(24):7616–7622CrossRefGoogle Scholar
  37. Rigotto C, Hanley K, Rochelle PA, De Leon R, Barardi CRM, Yates MV (2011) Survival of adenovirus types 2 and 41 in surface and ground waters measured by a plaque assay. Environ Sci Technol 45(9):4145–4150CrossRefGoogle Scholar
  38. Rijal G, Petropoulou C, Tolson JK, DeFlaun M, Gerba C, Gore R, Glymph T, Granato T, O'Connor C, Kollias L, Lanyon R (2009) Dry and wet weather microbial characterization of the Chicago area waterway system. Water Sci Technol 60(7):1847–1855.  https://doi.org/10.2166/wst.2009.598 CrossRefGoogle Scholar
  39. Rodrigues MT, Henzel A, Staggemeier R, Quevedo DM, Rigotto C, Heinzelmann L, Nascimento CA, Spilki FR (2015) Human adenovirus spread, rainfalls, and the occurrence of gastroenteritis cases in a Brazilian basin. Environ Monit Assess 187:720.  https://doi.org/10.1007/s10661-015-4917-4 CrossRefGoogle Scholar
  40. Rusinõl M, Fernandez-Cassi X, Hundesa A et al (2014) Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Res 59:119–129.  https://doi.org/10.1016/j.watres.2014.04.013 CrossRefGoogle Scholar
  41. Sankararamakrishnan N, Guo Q (2005) Chemical tracers as indicator of human fecal coliforms at storm water outfalls. Environ Int 31(8):1133–1140CrossRefGoogle Scholar
  42. Santos FM, Vieira MJ, Garrafa P et al (2004) Discrimination of adenovirus types circulating in urban sewage and surface polluted waters in São Paulo city, Brazil. Water Sci Technol 4(2):79–85Google Scholar
  43. Sauvé S, Aboulfadl K, Dorner S, Payment P, Deschamps G, Prévost M (2012) Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area. Chemosphere 86(2):118–123CrossRefGoogle Scholar
  44. Shadow RA (2011) Plant fact sheet for yaupon, Ilex vomitoria. USDA-Natural Resources Conservation Service, East Texas Plant Materials Center, NacogdochesGoogle Scholar
  45. Sobsey MD, Meschke JS (2003) Virus survival in the environment with special attention to survival in sewage droplets and other environmental media of fecal or respiratory origin. Rep. World Heal. Organ, Geneva 70 pagesGoogle Scholar
  46. Spence PL (2015) Using caffeine as a water quality indicator in the ambient monitoring program for third Fork Creek watershed, Durham, North Carolina. Environ Health Insights 9(2):29–34.  https://doi.org/10.4137/EHI.S19588 Google Scholar
  47. Staggemeier R, Bortoluzzi M, da Silva Heck TM, da Luz RB, Fabres RB, Soliman MC, Rigotto C, Baldasso NA, Spilki FR, de Matos Almeida SE (2015) Animal and human enteric viruses in water and sediment samples from dairy farms. Agric Water Manag 152:135–141.  https://doi.org/10.1016/j.agwat.2015.01.010 CrossRefGoogle Scholar
  48. Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177(1):150–158.  https://doi.org/10.1016/j.chroma.2007.10.105 CrossRefGoogle Scholar
  49. Vecchia A, Fleck J, Comerlato J, Kluge M, Bergamaschi B, da Silva JVS, da Luz RB, Teixeira TF, Garbinatto GN, Oliveira DV, Zanin JG, van der Sand S, Frazzon APG, Franco AC, Roehe PM, Spilki FR (2012) First description of adenovirus, enterovirus, rotavirus and torque Teno virus in water samples collected from the Arroio Dilúvio, Porto Alegre, Brazil. Braz J Biol 72:323–329.  https://doi.org/10.1590/S1519-69842012000200013 CrossRefGoogle Scholar
  50. Vecchia AD, Rigotto C, Staggemeier R et al (2015) Surface water quality in the Sinos River basin, in southern Brazil: tracking microbiological contamination and correlation with physicochemical parameters. Environ Sci Pollut Res 22:9899–9911.  https://doi.org/10.1007/s11356-015-4175-6 CrossRefGoogle Scholar
  51. Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmons T, Ma Y (2011) Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res 45:1818–1828.  https://doi.org/10.1016/j.watres.2010.11.043 CrossRefGoogle Scholar
  52. WHO (2006) Guidelines for the safe use of wastewater, Excreta and Greywater: Policy and Regulatory Aspects. World Health Organisation, GenevaGoogle Scholar
  53. Wolf S, Hewitt J, Greening GE (2010) Viral multiplex quantitative PCR assays for tracking sources of fecal contamination applied and environmental microbiology 1388–1394 76(5):1388–1394.  https://doi.org/10.1128/AEM.02249-09
  54. Wong K, Fong TT, Bibby K, Molina M (2012) Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ Int 45:151–164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Giovana Piva Peteffi
    • 1
    • 2
    • 3
  • Juliane Deise Fleck
    • 2
    • 4
  • Igor Mendes Kael
    • 1
  • Viviane Girardi
    • 2
    • 4
  • Raquel Bündchen
    • 4
  • Daiane Metz Krajeski
    • 4
  • Meriane Demoliner
    • 4
  • Francini Pereira Silva
    • 4
  • Débora Couto da Rosa
    • 4
  • Marina Venzon Antunes
    • 1
  • Rafael Linden
    • 1
    • 2
  1. 1.Laboratory of Analytical ToxicologyUniversidade FeevaleNovo HamburgoBrazil
  2. 2.Graduate Program in Environmental QualityUniversidade FeevaleNovo HamburgoBrazil
  3. 3.Novo HamburgoBrazil
  4. 4.Laboratory of Molecular MicrobiologyUniversidade FeevaleNovo HamburgoBrazil

Personalised recommendations