Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15404–15410 | Cite as

Nephrotoxicity in Hybrid sparrow (Passer domesticus × Passer hispaniolensis) living near a phosphate treatment factory complex in southern Tunisia: a biochemical and histological study

  • Nahed Amri
  • Tarek Rebai
  • Neila Jardak
  • Riadh Badraoui
Research Article
  • 67 Downloads

Abstract

Our study was designed to evaluate impacts of exposure to pollutants, released by the Gabès–Ghannouche factory complex of phosphate treatment, on biochemical biomarkers and histopathological indices in kidney tissues of Hybrid sparrow (Passer domesticus × Passer hispaniolensis) in Gabès city. Our results show evidence of a pronounced impairment in kidney function which is confirmed by remarkable blood chemical alterations in sparrows living in Ghannouche, the most polluted site. Moreover, superoxide dismutase and catalase activities were found to be decreased in birds sampled from the contaminated site when compared to less polluted areas. The population of sparrows feeding in Ghannouche had enhanced renal thiobarbituric acid reactive substance levels, indicating oxidative damage to membrane lipids. Some histopathological alterations were also observed including kidney interstitial dilatations. Overall, our findings demonstrated that the exposure to pollutants released by the factory complex possessed nephrotoxic by depleting renal antioxidant defense system and promoting kidney morphometric damage in sparrows. These results constitute an early warning of an ecological change in relation to human health.

Keywords

Pollution Biomarkers Ecotoxicology Hybrid sparrow Kidney Gabès 

Abbreviations

CAT

Catalase

Cd

Cadmium

Cu

Copper

G

Glomerulus

MDA

Malondialdehyde

NSI

Nephrosomatic index

Pb

Lead

PU

Urinary pole

PV

Vascular pole

ROS

Reactive oxygen species

SOD

Superoxide dismutase

T

Renal tubule

TBA

Thiobarbituric acid

TBARS

Thiobarbituric acid reactive substances

Notes

Funding information

This work was supported by the Tunisian ministry of high education and carried out in the research unit 12ES15 of the Medicine Faculty of Sfax University.

Compliance with ethical standards

We assured that all the experimental protocols were conducted in compliance with the guidelines of the local Institute Ethical committee for the care and use of laboratory animals (License number 947/17-04-2014).

References

  1. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126CrossRefGoogle Scholar
  2. Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62CrossRefGoogle Scholar
  3. Amri N, Hammouda A, Rahmouni F, Chokri MA, Chaabane R, Selmi S, Rebai T, Badraoui R (2016) Reproductive effects in hybrid sparrow from a polluted area in Tunisia: oxidative damage and altered testicular histomorphology. Ecotoxicol Environ Saf 129:164–170CrossRefGoogle Scholar
  4. Amri N, Rahmouni F, Chokri MA, Rebai T, Badraoui R (2017) Histological and biochemical biomarkers analysis reveal strong toxicological impacts of pollution in hybrid sparrow (Passer domesticus × Passer hispaniolensis) in southern Tunisia. Environ Sci Pollut Res 24:17845–17852CrossRefGoogle Scholar
  5. Atef MAA (2011) Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J Biol Sci 18:63–72CrossRefGoogle Scholar
  6. Ayadi N, Aloulou F, Bouzid J (2015) Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arab J Geosci 8:1755–1767CrossRefGoogle Scholar
  7. Azri C, Maalej A, Tlili A, Medhioub K (2002a) Caractérisation du niveau de pollution atmosphérique dans la ville de Sfax (Tunisie): influence des sources et des facteurs météorologique. Tech Sci Methods 1:78–92Google Scholar
  8. Azri C, Tlili A, Serbaji MM, Medhioub K (2002b) Etude des résidus de combustion des fuels liquide et solide et de traitement chimique du phosphate brut dans la ville de Sfax (Tunisie). Atmos Pollut Res 174:297–308Google Scholar
  9. Babu SV, Urolagin DK, Veeresh B, Attanshetty N (2011) Anogeissus latifolia prevents gentamicin induced nephrotoxicity in rats. Int J Pharm Sci Res 3:1091–1095Google Scholar
  10. Badraoui R, Ben Nasr H, Louati R, Ellouze F, Rebai T (2012) Nephrotoxic effect of tetradifon in rats: a biochemical and histomorphometric study. Exp Toxicol Pathol 64:645–650CrossRefGoogle Scholar
  11. Béjaoui B, Rais S, Koutilonsky V (2004) Modélisation de la dispersion du phosphogypse dans le golfe de Gabés. Bull Inst Natn Scient Techn Océanogr Pêche Salammbô 31:113–119Google Scholar
  12. Carneiro M, Colaço B, Brandão R, Azorín B, Nicolas O, Colaço J, Pires MJ, Agustí S, Casas-Díaz E, Lavin S, Oliveira PA (2015) Assessment of the exposure to heavy metals in Griffon vultures (Gyps fulvus) from the Iberian Peninsula. Ecotoxicol Environ Saf 113:295–301CrossRefGoogle Scholar
  13. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120CrossRefGoogle Scholar
  14. Confer AW, Panciera RJ (1995) Thomsons special veterinary pathology. Mosby Year Book, St. LouisGoogle Scholar
  15. Elamouri M, Ben Amar F (2007) Wind energy potential in Tunisia. Renew Energy 33:758–768CrossRefGoogle Scholar
  16. El-Ashmawy HM, El-Nahas EF, Salama OM (2006) Grape seed extract prevents gentamicin-induced nephrotoxicity and genotoxicity in bone marrow cells of mice. Basic Clin Pharmacol Toxicol 99:230–236CrossRefGoogle Scholar
  17. Espín S, Martínez-López E, Jiménez P, María-Mojica P, García-Fernández AJ (2014) Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Environ Res 129:59–68CrossRefGoogle Scholar
  18. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Method Enzymol 186:407–421CrossRefGoogle Scholar
  19. Fadillioglu E, Oztas E, Erdogan H, Yagmura M, Sogut S, Ucar M, Irmak MK (2004) Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol 24:47–52CrossRefGoogle Scholar
  20. Farkas A, Salanki J, Specziar A, Varanka I (2001) Metal pollution as health indicator of lake ecosystems. Int J Occup Med Environ Health 14:163–170Google Scholar
  21. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and biology of ageing. Nat 408:147–239CrossRefGoogle Scholar
  22. Frank CMD (1993) Clinical significance of tests available from Dupont. Clinical Laboratories, University Hospitals, The University of WisconsinGoogle Scholar
  23. Furst A (2002) My saga with earthworms. Food Chem Toxicol 40:789–791CrossRefGoogle Scholar
  24. Goran GV, Crivineanu V, Papuc C, Crivineanu CD (2008) Effect of sea-buckthorn alcoholic extracts (Hippophe fructus) on hepatic and renal functions in laboratory rat. Vet Med 65:288–292Google Scholar
  25. Guitart R, Torra M, Cerradelo S, Puig-Casado P, Mateo R, To-Figueras J (1994) Pb, Cd, As and Se concentrations in livers of dead wild birds from the Ebro Delta, Spain. Bull Environ Contam Toxicol 52:523–529CrossRefGoogle Scholar
  26. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, fourth edn. Oxford University Press, New YorkGoogle Scholar
  27. Hammouda A, Lecollinet S, Hamza F, Nasri I, Neb A, Selmi S (2015) Exposure of resident sparrows to West Nile virus evidenced in South Tunisia. Epidemiol Infect 143:3546–3549CrossRefGoogle Scholar
  28. Harte J, Holdren C, Schneider R, Shirley C (1991) Toxics A to Z: a guide to everyday pollution hazards. University of California Press, Berkeley, USA, p 480Google Scholar
  29. Hermenean A, Damache G, Albu P, Ardelean A, Ardelean G, Ardelean DP, Horge M, Nagy T, Braun M, Zsuga M, Kéki S, Costache M, Dinischiotu A (2015) Histopatological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania. Ecotoxicol Environ Saf 119:198–205CrossRefGoogle Scholar
  30. Hoffman DJ, Heinz GH, Sileo L, Audet DJ, Campbell JK, Le Captain LJ (2000a) Developmental toxicity of lead-contaminated sediment to mallard ducklings. Arch Environ Contam Toxicol 39:221–232CrossRefGoogle Scholar
  31. Hoffman DJ, Heinz GH, Sileo L, Audet DJ, Campbell JK, Le Captain LJ, Obrecht HH (2000b) Developmental toxicity of lead-contaminated sediment in Canada geese (Brantacanadensis). J Toxicol Environ Health Part A 59:235–252CrossRefGoogle Scholar
  32. Karahan I, Atessahin A, Yilmaz S, Ceribasi AO, Sakin F (2005) Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology 215:198–204CrossRefGoogle Scholar
  33. Kore KJ, Shete RV, Kale BN, Borade AS (2011) Protective role of hydroalcoholic extract of Ficus carica in gentamicin induced nephrotoxicity in rats. IJPLS 2:978–982Google Scholar
  34. Marijic VF, Raspor B (2007) Metal exposure assessment in native fish, Mullus barbatus L., from the Eastern Adriatic Sea. Toxicol Lett 168:292–301CrossRefGoogle Scholar
  35. Mateo R, Beyer WN, Spann JW, Hoffman DJ, Ramis A (2003) Relationship between oxidative stress, pathology, and behavioral signs of lead poisoning in mallards. J Toxicol Environ Health Part A 66:1371–1389CrossRefGoogle Scholar
  36. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, di-methyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063Google Scholar
  37. Miandare MJ, Niknejad M, Shabani A, Safari R (2016) Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations. Comp Biochem Physiol C Toxicol Pharmacol 182:1–8CrossRefGoogle Scholar
  38. Missoun F, Slimani M, Aoues A (2010) Toxic effect of lead on kidney function in rat Wistar. Afr J Biochem Res 4:21–27Google Scholar
  39. Odigie IP, Ladipo CO, Ettarh RR, Izegbu MC (2004) Effect of chronic exposure to low levels of lead on renal function and renal ultrastructure in SD rats. Niger J Physiol Sci 19:27–32Google Scholar
  40. Saglam D, Atli G, Dogan Z, Baysoy E, Gurler C, Eroglu A, Canli M (2014) Response of the antioxidant system of fresh water fish (Oreochromis niloticus) exposed to metals (Cd, Cu) indifferent hardness. Turk J Fish Aquat Sci 14:43–52Google Scholar
  41. Sánchez-Chardi A, Ribeiro CAO, Nadal J (2009) Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana. Chemosphere 76:387–394CrossRefGoogle Scholar
  42. Saxena PN, Anand S, Saxena N, Bajaj P (2009) Effect of arsenic trioxide on renal functions and its modulation by Curcuma aromatica leaf extract in albino rat. J Environ Biol 30:527–531Google Scholar
  43. Smith E, Hill R, Legman R, Lefkowitz R, Handler P, White A (1988) Principles of biochemistry: mammalian biochemistry, seventh edn. McGraw-Hill, New York, USAGoogle Scholar
  44. Soliman KM, Abdul-Hamid M, Othman AI (2007) Effect of carnosine on gentamicin-induced nephrotoxicity. Med Sci Monit 13:73–83Google Scholar
  45. Sonne C, Leifsson PS, Dietz R, Kirkegaard M, Moller P, Jensen AL, Letcher RJ, Shahmiri S (2007) Renal lesions in Greenland sledge dogs (Canis familiaris) exposed to a natural dietary cocktail of persistent organic pollutants. Toxicol Environ Chem 89:563–576CrossRefGoogle Scholar
  46. Swaileh KM, Sansur R (2006) Monitoring urban heavy metal pollution using the house sparrow (Passer domesticus). J Environ Monitor 8:209–213CrossRefGoogle Scholar
  47. Tabassum H, Ashafaq M, Khan J, Zahir Shah MZ, Sheikh Raisuddin S, Suhel Parvez S (2016) Short term exposure of pendimethalin induces biochemical and histological perturbations in liver, kidney and gill of freshwater fish. Ecol Indic 63:29–36CrossRefGoogle Scholar
  48. Tietz NW (1996) Fundamentals of clinical chemistry, fourth edn. W. B. Saunders Company, USAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nahed Amri
    • 1
    • 2
  • Tarek Rebai
    • 1
  • Neila Jardak
    • 1
  • Riadh Badraoui
    • 1
    • 3
  1. 1.Laboratory of Histo-Embryology and CytogeneticsMedicine Faculty of Sfax UniversitySfaxTunisia
  2. 2.Department of BiologyFaculty of Sciences of Gabès UniversityGabèsTunisia
  3. 3.Laboratory of Histology-CytologyMedicine Faculty of Tunis El Manar UniversityTunisTunisia

Personalised recommendations