Skip to main content

Advertisement

Log in

Assessing hydrothermal groundwater flow path using Kohonen’s SOM, geochemical data, and groundwater temperature cooling trend

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Assessing groundwater flow path in a thermal aquifer, such as El Hamma aquifer, southeastern Tunisia, and its lateral communication with the adjacent Jeffara-Gabes aquifers, is a very complex operation which requires the integration of several approaches to understand and explain the reality of phenomenon. In this study, geochemical and isotopic data, Kohonen self-organizing map, temperature cooling trend, and kriging techniques were used to assess groundwater flow path in hydrothermal aquifer of El Hamma-Gabes, Tunisia. For this objective, 32 sampled wells are analyzed for major ions, electric conductivity, pH, total dissolved solids, and stables isotopes (δ2H and δ18O). Geochemical diagrams reveal that groundwater chemistry was controlled by evaporation, and rock-water interaction with a dominant water facies was Cl·SO4-Na·Ca-Mg. Kriging techniques were used to highlight groundwater flow path. Kohonen self-organizing map shows that the waters are clustered into three classes according to chemical and isotopic composition. These clusters represent a hydrothermal groundwater class from the Continental Intercalaire aquifer, a shallow groundwater class corresponding to Jeffara-Gabes aquifer and mixed water class. Groundwater cooling trend and stable isotopes indicate that groundwater flow is toward west to east part of study area, indicating a recharge of Jeffara aquifer from El Hamma thermal aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abid K, Trabelsi R, Zouari K, Abidi B (2009) Hydrogeochemical characterization of the Continental Intercalaire aquifer (southern Tunisia). Hydrol Sci–Journal–des Sci Hydrol 54(3):526–537

    Article  CAS  Google Scholar 

  • Abidi B (2001) The Continental Intercalary aquifer of Southeast Tunisia: Analysis of the current situation. DGRE, Tunisia, 228 p

  • Abidi B (2004) Caractéristiques hydrodynamique et géochimique de la Djeffara de Gabès, DRE de Gabès; 120 p. (in French)

  • Agoubi B, Souid F, Telahigue F, Kharroubi A (2015) Temperature and Radon-222 as tracer of groundwater flow: application to El Hamma geothermal aquifer system, southeastern Tunisia. Arab J Geosci 8:11161–11174. https://doi.org/10.1007/s12517-015-1998-x

    Article  CAS  Google Scholar 

  • Ayadi M (1988) Geological and hydrogeological results of El Hamma South borehole N ° 2. DGRE, Tunisia

  • Banoeng-Yakubo B, Mark Yidana S, Nti E (2008) Hydrochemical analysis of groundwater using multivariate statistical methods: the Volta Region, Ghana. KSCE J Civ Eng 13:55–63

    Article  Google Scholar 

  • Ben Brahim F, Makni J, Bouri S (2014). Evaluation of temperature and mixing process of water in deep and shallow aquifers in the southwestern Tunisia: case of Djerid region. Arab J Sci Eng, v39 (7), pp 5677–5689. https://doi.org/10.1007/s13369-014-1138-z, 39

  • Ben Hamouda MF, Mamou A, Bejaoui J, Froehlich K (2013) Hydrochemical and isotopic study of groundwater in the North Djeffara Aquifer, Gulf of Gabès, Southern Tunisia. Int J Geosci Vol. 4 No. 8A (2013), DOI:https://doi.org/10.4236/ijg.2013.48A001

  • Ben Ouezdou H (1984) Stratigraphy of quaternary continental deposits around the Gulf of Gabes (Southern Tunisia). Proceedings of the Academy of Sciences, Mechanics-Physics, Chemistry, Sciences of the Universe. Earth Sci Series II 299(19):1351–1354

    Google Scholar 

  • Bouri S, Makni J, Ben Dhia H (2008) A synthetic approach integrating surface and subsurface data for prospecting deep aquifers: the Southeast Tunisia. Environ Geol 54:1473–1484. https://doi.org/10.1007/s00254-007-0928-y

    Article  CAS  Google Scholar 

  • Bravo HR, Feng J, Hunt RJ (2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour Res 38:8. https://doi.org/10.1029/2000WR000172

    Article  Google Scholar 

  • Cereghino R, Park Y (2009) Review of the self-organizing map (SOM) approach in water resources: commentary. Environ Model Softw 24(2009):945–947. https://doi.org/10.1016/j.envsoft.2009.01.008

    Article  Google Scholar 

  • Chu D, Hole W (2004) The GLOBEC kriging software package EasyKrig3.0

  • DeMontety V, Radakovitch O, Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). Appl Geochem 23(2008):2337–2349

    Article  CAS  Google Scholar 

  • Furundzic D (1998) Application of neural networks for time series analysis: rainfall–runoff modelling. Signal Process 64:383–396

    Article  Google Scholar 

  • Hernández-Antonio JM, Tamez-Meléndez C, Ramos-Leal AR-O, Parra R, Ornelas-Soto N, Eastoe CJ (2015) Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico). Hydrol Earth Syst Sci 19:3937–3950. https://doi.org/10.5194/hess-19-3937-2015

    Article  CAS  Google Scholar 

  • Horst A, Mahlknecht J, Merkel BJ (2007) Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18). Isot Environ Health Stud 43(4):2007–2338. https://doi.org/10.1080/10256010701701756

    Article  CAS  Google Scholar 

  • Hsu K, Li S (2010) Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Adv Water Resour 33:190–200

    Article  Google Scholar 

  • Kangur K, Park Y-S, Kangur A, Kangur P, Lek S (2007) Patterning long-term changes of fish community in large shallow Lake Peipsi. Ecol Model 203:34–44

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, third edn. Springer-Verlag, Berlin

  • Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes: the stable isotope mass balance method. Water Resour Res 26(10):2445–2453. https://doi.org/10.1029/WR026i010p02445

    Article  CAS  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1268

    Article  CAS  Google Scholar 

  • Mehrjardi RT, Johromi MZ, Mahmodi M, Heidari A (2009) Spatial distribution of groundwater quality with geostatistics (case study: yazd-Ardakan Plain). World Appl Sci J 4(1):09–17

    Google Scholar 

  • Mekrazi AF (1975). Contribution to the hydrogeological Study of the Gabès Region North 3rd Cycle Thesis, University of Bordeaux I

  • Ousmana H, El Hmaidi A, Berrada M, Damnati B, Etebaai I (2016). Application of the self organizing map method for the classification of the environmental quality of the lake systems in the moroccan middle atlas: lakes cases of Ifrah, Iffer and Afourgagh. Larhyss Journal, ISSN 1112–3680, n°25, pp. 49–65

  • Rozanski K, Araguâs-Araguâs L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In : climate change in continental isotopic records. Ed. By PK Swart, KC Lohman J., McKenzie & S. Savin.137. Geophysical monograph 78. American geophysical union

  • Rushton and Redshaw SC (1979) Seepage and groundwater flow, numerical analysis by analog and digital methods, K. R., Wiley, New York, p339

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524

    Article  Google Scholar 

  • Tison J, Giraudel JL, Coste M, Park YS, Delmas F (2004) Use of unsupervised neural networks for eco-regional zonation of hydrosystems through diatom communities: case study of Adour–Garonne watershed (France). Arch Hydrobiol 159:409–422

    Article  Google Scholar 

  • Trevor E (2014) Environmental tracers. Water journal 6:3264–3269. https://doi.org/10.3390/w6113264

    Article  Google Scholar 

  • Vesanto J, Alhoneimi E, (2000). Clustering of the self organizing map. IEEE Trans, Neural Networks, 11 (3), 586–600

  • Vesanto J, Himberg J, Alhoniemi E, Parkankangas J (1999) Self−Organizing Map in Matlab: the SOM Toolbox. In Proceedings of the Matlab DSP Conference 1999, Espoo, Finland, pp. 35–40

  • Wassenaar LI, Van Wilgenburg SL, Larson K, Hobson KA (2009) A groundwater isoscape (δD, δ18O) for Mexico. J Geochem Explor 102(2009):123–136. https://doi.org/10.1016/j.gexplo.2009.01.001

    Article  CAS  Google Scholar 

  • Zhao W, Wang H, Wang Z (2011) Groundwater level forecasting based on support vector machine. Appl Mech Mater 44–47(2011):1365–1369. https://doi.org/10.4028/www.scientific.net/AMM.44-47.1365

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Dr. Philippe Garrigues, and Dr. Matia Menichini and anonymous reviewers for their insightful comments, which greatly improved this manuscript. I also thank my English teacher’s colleagues for their efforts to improve the English quality of this manuscript so that this becomes more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgacem Agoubi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agoubi, B. Assessing hydrothermal groundwater flow path using Kohonen’s SOM, geochemical data, and groundwater temperature cooling trend. Environ Sci Pollut Res 25, 13597–13610 (2018). https://doi.org/10.1007/s11356-018-1525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1525-1

Keywords

Navigation