Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 14, pp 14271–14276 | Cite as

Selection of tawny owl (Strix aluco) flight feather shaft for biomonitoring As, Cd and Pb pollution

  • Rita García Seoane
  • Zulema Varela Río
  • Alejo Carballeira Ocaña
  • José Ángel Fernández Escribano
  • Jesús Ramón Aboal Viñas
Short Research and Discussion Article

Abstract

In this study, we determined the concentrations of As, Cd and Pb in the shaft of all primary flight feathers from ten tawny owl (Strix aluco) specimens, with the aim of selecting which shaft of the corresponding primary feather should be used in biomonitoring surveys to enable inter-individual comparisons of the levels of these metals. The birds had died between 2006 and 2013 and their bodies were stored in the various Wildlife Recovery Centres in Galicia (NW Spain). The analyses revealed a high degree of inter-shaft variability, mainly in the concentrations of As and Cd. However, it was possible to identify the most representative samples in each case: for As, the shaft of primary flight feather number 5 (S5) (which represented 11% of the total As excreted in all of the primary flight feathers); for Cd, the shaft of primary flight feather number 2 (S2) (11% of the total excreted); and for Pb, the shaft of primary flight feather number 8 (S8) (14% of the total excreted). However, the difficulties associated with the analytical determination of these pollutants in the shaft should be taken into account when this technique is applied in biomonitoring studies.

Keywords

Air pollution Bioaccumulation Biomonitoring Feather Raptor Terrestrial food chain 

Notes

Acknowledgments

We thank all the personnel at the Wildlife Recovery Centres of the Xunta de Galicia for helping in obtaining the samples.

Funding information

The authors are members of the Galician Competitive Research Group GRC/GPC2016-002 and of the CRETUS Strategic Partnership (AGRUP2015/02), which are co-funded by FEDER (EU).

Supplementary material

11356_2018_1477_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)

References

  1. Altmeyer M, Dittmann J, Dmowski K, Wagner G, Müller P (1991) Distribution of elements in flight feathers of a white-tailed eagle. Sci Total Environ 105:157–164CrossRefGoogle Scholar
  2. Bachmann T, Emmerlich J, Baumgartner W, Schneider JM, Wagner H (2012) Flexural stiffness of feather shafts: geometry rules over material properties. J Exp Biol 215:405–415CrossRefGoogle Scholar
  3. Behrooz RD, Ghasempouri SM, Nehi AM, Nowrouzi M, Barghi M (2014) Mercury contamination in five owl species from Iran. Chem Spec Bioavailab 26:191–195CrossRefGoogle Scholar
  4. Bortolotti GR (2010) Flaws and pitfalls in the chemical analysis of feathers: bad news–good news for avian chemoecology and toxicology. Ecol Appl 20:1766–1774CrossRefGoogle Scholar
  5. Bustnes JO, Bardsen BJ, Bandjorg G, Lierhagen S, Yoccoz NG (2013) Temporal trends (1986–2005) of essential and non-essential elements in a terrestrial raptor in northern Europe. Sci Total Environ 458–460:101–106CrossRefGoogle Scholar
  6. Cardiel IE, Taggart MA, Mateo R (2011) Using Pb–Al ratios to discriminate between internal and external deposition of Pb in feathers. Ecotoxicol Environ Saf 74:911–917CrossRefGoogle Scholar
  7. Castro I, Aboal JR, Fernández JA, Carballeira A (2011) Use of raptors for biomonitoring of heavy metals: gender, age and tissue selection. Bull Environ Contam Toxicol 86:347–351CrossRefGoogle Scholar
  8. Cramp S (1978) Handbook of the birds of Europe, the Middle East and North Africa, 1st edn. Oxford University Press, OxfordGoogle Scholar
  9. Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124:429–436CrossRefGoogle Scholar
  10. Debén S, Aboal JR, Carballeira A, Fernández JA (2012) Evaluation of body feathers of Accipiter gentilis and Strix aluco as lead biomonitors. Ecotoxicol Environ Saf 85:115–119CrossRefGoogle Scholar
  11. Denneman WD, Douben PE (1993) Trace metals in primary feathers of the barn owl (Tyto alba guttatus) in The Netherlands. Environ Pollut 82:301–310CrossRefGoogle Scholar
  12. Dietz R, Riget FF, Boertmann D, Sonne C, Fjeldsa J, Olsen MT, Falk K, Kirkegaard M, Egevang C, Wille F, Asmund G, Méller S (2006) Time trends of mercury in feathers of West Greenland birds of prey during 1851–2003. Environ Sci Technol 40:5911–5916CrossRefGoogle Scholar
  13. Furness RW (1993) Birds as monitors of pollutants. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman & Hall, London, p 86CrossRefGoogle Scholar
  14. García-Seoane R, Varela Z, Carballeira A, Aboal JR, Fernández JA (2017) Temporal trends in mercury concentrations in raptor flight feathers stored in an environmental specimen bank in Galicia (NW Spain) between 2000 and 2013. Ecotoxicology 26:196–201CrossRefGoogle Scholar
  15. Gochfeld M, Belant JL, Shukla T, Benson T, Burger J (1996) Heavy metals in laughing gulls: gender, age and tissue differences. Environ Toxicol Chem 15:2275–2283CrossRefGoogle Scholar
  16. Goede AA, de Bruin M (1984) The use of bird feather parts as a monitor for metal pollution. Environ Pollut 8:281–298CrossRefGoogle Scholar
  17. Hahn E, Hahn K, Stoeppler M (1993) Bird feathers as bioindicators in areas of the German environmental specimen bank—bioaccumulation of mercury in food chains and exogenous deposition of atmospheric pollution with lead and cadmium. Sci Total Environ 139–140:259–270CrossRefGoogle Scholar
  18. Honda K, Min BY, Tatsukawa R (1985) Heavy metal distribution in organs and tissues of the eastern great white egret Egretta alba modesta. Bull Environ Contam Toxicol 35:781–789CrossRefGoogle Scholar
  19. Jaspers V, Dauwe T, Pinxten R, Bervoets L, Blust R, Eens M (2004) The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J Environ Monitor 6:356–360CrossRefGoogle Scholar
  20. Karell P, Ahola K, Karstinen T, Valkama J, Brommer JE (2011) Climate change drives microevolution in a wild bird. Nat Commun 2:208CrossRefGoogle Scholar
  21. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiae. p. 93. S (capite laevi, corpore ferrugineo, iridíbus atris, remi-gibus primoribus serratís) (in Latin)Google Scholar
  22. Lourenço R, Tavares PC, Del Mar DM, Rabaça JE, Penteriani V (2011) Superpredation increases mercury levels in a generalist top predator, the eagle owl. Ecotoxicology 20:635–642CrossRefGoogle Scholar
  23. Martínez A, Crespo D, Fernández JA, Aboal JR, Carballeira A (2012) Selection of flight feathers from Buteo buteo and Accipiter gentilis for use in biomonitoring heavy metal contamination. Sci Total Environ 425:254–261CrossRefGoogle Scholar
  24. Rodriguez-Ramos FJ, Hoefle U, Mateo R, de Francisco ON, Abbott R, Acevedo P, Blanco JM (2011) Assessment of lead exposure in Spanish imperial eagle (Aquila adalberti) from spent ammunition in central Spain. Ecotoxicology 20:670–681CrossRefGoogle Scholar
  25. Varela Z, García-Seoane R, Fernández JA, Carballeira A, Aboal JR (2016) Study of temporal trends in mercury concentrations in the primary flight feathers of Strix aluco. Ecotox Environ Safe 130:199–206CrossRefGoogle Scholar
  26. Zar JH (2009) Biostatistical analysis, 5th edn. Prentice-Hall, LondonGoogle Scholar
  27. Zolfaghari G, Esmaili-Sari A, Mahmoud GS, Hassanzade KB (2007) Examination of mercury concentration in the feathers of 18 species of birds in southwest Iran. Environ Res 104:258–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rita García Seoane
    • 1
  • Zulema Varela Río
    • 1
    • 2
  • Alejo Carballeira Ocaña
    • 1
  • José Ángel Fernández Escribano
    • 1
  • Jesús Ramón Aboal Viñas
    • 1
  1. 1.Ecology Unit, Department Functional BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências, Universidade de Lisboa, Campo GrandeLisboaPortugal

Personalised recommendations