Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 11023–11033 | Cite as

The effect of dietary selenium addition on the concentrations of heavy metals in the tissues of fallow deer (Dama dama L.) in Croatia

  • Neška Vukšić
  • Marcela Šperanda
  • Zdenko Lončarić
  • Mislav Đidara
  • Eyer Ludek
  • Ivica Budor
Research Article


The aim of this research was to determine the concentrations of cadmium, lead, mercury, and arsenic and the essential elements iron and selenium in the tissues (muscle, kidney, liver, spleen, and fat) of fallow deer (Dama dama L.) without and with supplemental selenium addition. Another aim was to determine the effect of selenium addition on the indicators of oxidative stress, namely, the levels of superoxide dismutase, glutathione peroxidase, glutathione, and vitamin E. The research was carried out with 40 fallow deer during two research periods. Supplemental feed without selenium addition was provided during the first research period, and supplemental feed with added selenium (3 mg/kg) was provided for 60 days during the second research period. The concentration of selenium in tissues was higher in the second research period than in the first research period (in kidney tissue, 0.957 vs. 0.688 mg/kg, P < 0.05). The dietary addition of selenium decreased (P < 0.05) the concentrations of some heavy metals (lead in the spleen = 0.06 vs. 0.27 mg/kg and in the fatty tissue = 0.17 vs. 0.69 mg/kg; arsenic in the muscle tissue = 0.005 vs. 0.014 mg/kg, liver = 0.003 vs. 0.009 mg/kg, spleen = 0.004 vs. 0.013 mg/kg, and fat = 0.008 vs. 0.016 mg/kg). The activity of glutathione peroxidase was significantly higher (P < 0.05) in the second research period than in the first research period (1375.36 vs. 933.23 U/L).


Fallow deer Heavy metals Selenium Essential trace elements Tissues Antioxidative indicators 


Funding information

The authors express gratitude to the Croatian Hunting Association for providing support in funding this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al-Attar AM (2011) Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice. Saudi J Biol Sci 18(4):395–401. CrossRefGoogle Scholar
  2. Anonymous (1985) Nutrient requirements of domestic animals. Nutrient Requirements of Sheep. National Academy of Science-National Research Council, WashingtonGoogle Scholar
  3. Antunović Z, Klapec T, Čavar S, Mioč B, Novoselec J, Klir Ž (2012) Changes of heavy metal concentrations in goats milk during lactation stage in organic breeding. Bulgarian J Agr Sci 18:166–170Google Scholar
  4. Antunović Z, Klapec T, Čavar S, Šperanda M, Pavić V, Novoselec J, Klir Z (2013) Status of selenium and correlation with blood GSH-px in goats and their kids in organic breeding fed with different levels of organic seleniumium. Arch Tierz 56:167–177Google Scholar
  5. Bąkowska M, Pilarczyk B, Tomza-Marciniak A, Udała J, Pilarczyk R (2016) The bioaccumulation of lead in the organs of roe deer (Capreolus capreolus L.), red deer (Cervus elaphus L.), and wild boar (Sus scrofa L.) from Poland. Environ Sci Pollut Res 23:14373–14382. CrossRefGoogle Scholar
  6. Beyer WN, Gaston G, Brazzle R, O’Connell AF, Audet DJ (2007) Deer exposed to exceptionally high concentrations of lead near the Continental Mine in Idaho, USA. Environ Toxicol Chem 26(5):1040–1046. CrossRefGoogle Scholar
  7. Bilandžić N, Sedak M, Vratarić D, Perić T, Šimić B (2009) Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia. Sci Total Environ 407:4243–4247CrossRefGoogle Scholar
  8. Bjorklund G, Aaseth J., Skalny VA, Suliburska J, Skalnaya G., Nikonorov AA, Tinkoy AA (2017) Interaction of iron and manganese, zinc, chromium and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 41:41–53Google Scholar
  9. Bosnak CP, Davidowski I (2004) Continuous flow hydride generation using the optima ICP. Field application report. PerkinElmer Life and Analytical Science. Accessed 15 December 2017
  10. Caggiano R, Sabia S, Emilio M, Macchiato M, Anastasio A, Ragosta M, Paino S (2005) Metal levels in fodder, milk, dairy productions, and tissues sampled in ovine farms of Southern Italy. Environ Res 99:48–57CrossRefGoogle Scholar
  11. Calamari L, Petrera F, Abeni F, Bertin F (2011) Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different seleniumum sources and doses. Livest Sci 142(1-3):128–137. CrossRefGoogle Scholar
  12. Chinoy N, Sharma A, Patel T, Memon R, Jhala D (2004) Recovery from fluoride and aluminium induced free radical liver toxicity in mice. Fluoride 12:14–16Google Scholar
  13. Cunningham WP, Saigo BW (1997) Environmental science a global concern, 4th edn. WMC Brown Publisher, New YorkGoogle Scholar
  14. Dell Inc. (2016). Dell Statistica (data analysis software system), version 13.
  15. Długaszek M, Kopczyński K (2013) Elemental composition of muscle tissue of wild animals from central region of Poland. Int J Environ Res 7:973–978Google Scholar
  16. Ebeid TA (2012) Vitamin E and organic seleniumium enhances the antioxidative status and quality of chicken cockerel semen under high ambient temperature. Br Poult Sci 53(5):708–714. CrossRefGoogle Scholar
  17. Falandysz J (1994) Some toxic and trace metals in big game hunted in the northern part of Poland in 1987–1991. Sci Total Environ 141(1-3):59–73. CrossRefGoogle Scholar
  18. Findo S, Hell P, Farkas J, Mankovska BZ, Ilinec M, Stanovsky M (1993) Akkumulation von ausgewahlten Schwermetallen beim Rot-und Rehwild im zentralen Teil der Westkarpaten (Mittelslowakei). Z Jagdwiss 39:181–189Google Scholar
  19. Flueck WT, Smith-Flueck JM, Mionczynski J, Mincher BJ (2012) The implications of seleniumium deficiency for wild herbivore conservation: a review. Eur J Wildl Res 58(5):761–780. CrossRefGoogle Scholar
  20. Forte G, Bocca B (2007) Quantification of cadmium and lead in offal by SF-ICP-MS: method development and uncertainty estimate. Food Chem 105(4):1591–1598. CrossRefGoogle Scholar
  21. Gailer J, George GN, Pickering IJ, Prince RC, Ringwald SC, Pemberton JE, Aposhian HV (2000) A metabolic link between arsenite and selenite: the seleno-bis(S-glutathionyl) arsinium ion. J Am Chem Soc 122(19):4637–4639. CrossRefGoogle Scholar
  22. Gaurav D, Preet S, Dua K (2010) Chronic cadmium toxicity in rats: treatment with combined administration of vitamins, amino acids, antioxidants and essential metals. J Food Drug Anal 18:464–470Google Scholar
  23. Gizejewska A, Szkoda J, Nawrocka A, Zmudzki J, Gizejewski Z (2017) Can red deer antlers be used as an indicator of environmental and edible tissues’ trace element contamination? Environ Sci Pollut Res Int 23:11630–11638. CrossRefGoogle Scholar
  24. Halamić J, Galović L, Šparica M (2003) Heavy metal (As, Cd, Cu, Hg, Pb and Zn) distribution in topsoil developed on alluvial sediments of the Drava and Sava rivers in NW Croatia. Geologia Croat 56:215–232Google Scholar
  25. Himeno S, Yanagiya T, Fujishiro H (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91:1218–1222CrossRefGoogle Scholar
  26. Humann-Ziehank E, Ganter M, Hennig-Pauka I, Binder A (2008) Trace mineral status and liver and blood parameters in sheep without mineral supply compared to local roe deer (Capreolus capreolus L.) populations. Small Rumin Res 75(2-3):185–191. CrossRefGoogle Scholar
  27. Ivezić V, Singh BR, Rossebø AA, Lončarić Z (2013) Water extractable concentrations of Fe, Mn, Ni, Co, Mo, Pb and Cd under different land uses of Danube basin in Croatia. Acta Agric Scand Sect B Soil Plant Sci 61:747–759Google Scholar
  28. Jihen EH, Imed M, Fatima H, Abdelhamid K (2008) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: Histology and Cd accumulation. Food Chem Toxicol 46(11):3522–3527. CrossRefGoogle Scholar
  29. Jovanović JM, Nikolić RS, Kocić GM, Krstić NS, Krsmanović MM (2013) Glutathione protects liver and kidney tissue from cadmiumand lead-provoked lipid peroxidation. J Serb Chem Soc 78(2):197–207. CrossRefGoogle Scholar
  30. Kramárová M, Massányi P, Jančová A, Toman R, Slamečka J, Tataruch F, Kováčik J, Gašparik J, Nad P, Skalická M, Koréneková B, Juričik R, Čubon J, Haščik P (2005) Concentration of cadmium in the liver and kidneys of some wild and farm animals. Bull Vet Inst Pulawy 49:465–469Google Scholar
  31. Kurokawa S, Berry MJ (2013) Selenium. Role of the essential metalloid in health. Met Ions Life Sci 13:499–534. CrossRefGoogle Scholar
  32. Kwong WT, Richard PF, Semba D (2004) Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis. Sci Total Environ 330(1-3):21–37. CrossRefGoogle Scholar
  33. Lazarus M, Orct T, Aladrović J, Beer-Ljubić B, Jurasović J (2010) Effect of seleniumium pre-treatment on antioxidative enzymes and lipid peroxidation in Cd-exposed suckling rats. Biol Trace Elem Res 142:611–622CrossRefGoogle Scholar
  34. Lazarus M, Orct T, Blanuša M, Kostial K, Piršljin J, Beer-Ljubić B (2006) Effect of selenium pre-tretment on cadmium content and enzymatic antioxidants in tissues of suckling rat. Toxicol Lett 164:S191. CrossRefGoogle Scholar
  35. Lazarus M, Orct T, Blanuša M, Vicković I, Šoštarić B (2008) Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus L.) from Baranja, Croatia. Food Addit Contam 25:270–283CrossRefGoogle Scholar
  36. Lazarus M, Orct T, Jurasović J, Blanuša M (2009) The effect of dietary seleniumium supplementation on cadmium absorption and retention in suckling rats. Biometals 22(6):973–983. CrossRefGoogle Scholar
  37. Lazarus M, Prevendar-Crnić A, Bilandžić N, Kusak J, Reljić S (2014) Cadmium, lead and mercury exposure assessment among Croatia consumers of free-living game. Arc Hig Rada Toksikol 65:281–292Google Scholar
  38. Ma WC (2011) Lead in mammals. In: Beyer WN, Meador JP (eds) Environmental Contaminants in Biota: Interpreting Tissue Concentrations, 2nd edn. CRC Press, Boca Raton, pp 595–608. CrossRefGoogle Scholar
  39. Maňkovská B, Steinnes E (1995) Effects of pollutants from an aluminium reduction plant on forest ecosystems. Sci Total Environ 163(1-3):11–23. CrossRefGoogle Scholar
  40. Matsumoto K, Terada S, Ariyoshi M, Okajo A, Hisamatsu A, Ui I, Endo K (2009) The effect of long-running severe selenium-deficiency on the amount of iron and zinc in the organs of rats. Molecules 14:4440–4453CrossRefGoogle Scholar
  41. Morse BW, Miller DL, Miller KV, Baldwin CA (2009) Population health of fallow deer (Dama dama L.) on little St. Simons Island, Georgia, USA. J Wildl Dis 45(2):411–421. CrossRefGoogle Scholar
  42. Mulero R, Cano-Mauel J, Raez-Bravo A, Perez J, Espinoza J, Soriguer R, Fandos P, Granados JE, Romero D (2016) Lead and cadmium in wild boar (Sus scrofa) in the Sierra Nevada Natural Space (southern Spain). Environ Sci Pollut Res 23(16):16598–16608. CrossRefGoogle Scholar
  43. Nehru B, Dua R (1997) The effect of dietary seleniumium on lead neurotoxicity. J Environ Pathol Toxicol Oncol 16:47–50Google Scholar
  44. Newairy AA, El-Sharaky AS, Badreldeen MM, Eweda SM, Sheweita SA (2007) The hepatoprotective effects of seleniumium against cadmium toxicity in rats. Toxicology 242(1-3):23–30. CrossRefGoogle Scholar
  45. Osfor MM, Ibrahim HS, Mohamed YA, Ahmed S, Abd El Azeem A, Hegazy AM (2010) Effect of alpha lipoic acid and vitamin E on heavy metals intoxication in male albino rats. J Am Sci 6:6–63Google Scholar
  46. Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT (1998) Effects of micronutrients on metal toxicity. Environ Health Perspect 106:203–216Google Scholar
  47. Pollock B (2005) Trace elements status of white-tailed red deer (Odocoileus virginianus) and moose (Alces alces) in Nova Scotia. Wildlife Damage Management, Internet Center for Canadian Cooperative Wildlife Health Centre: Newsletters & Publications, University of Nebraska–Lincoln, 45. Accessed 22 December 2017
  48. Puls R (1994) Mineral levels in animal health: diagnostic data, 2nd edn. Sherpa International Clearbook, AbbotsfordGoogle Scholar
  49. Romić M, Romić D (2003) Heavy metals distribution in agricultural topsoils in urban area. Environ Geol 43:795–805Google Scholar
  50. Ropero MJP, Farinas NR, Mateo R, Nevado JJB, Martin-Doimeadios RCR (2016) Mercury species accumulation and trophic transfer in biological systems using the Almaden mining district (Ciudad Real, Spain) as a case of study. Environ Sci Pollut Res Int 23(7):6074–6081. CrossRefGoogle Scholar
  51. Rudy M (2009) Correlation of lead, cadmium and mercury levels in tissue and liver samples with age in cattle. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26(6):847–853. CrossRefGoogle Scholar
  52. Saito Y, Yoshida Y, Akazawa T, Takahashi K, Niki E (2003) Cell death caused by selenium deficiency and protective effect of antioxidants. J Biol Chem 278:39428–39434Google Scholar
  53. Santos FW, Zeni G, Rocha JBT, Weis SN, Fachinetto JM, Favero AM, Nogueira CW (2005) Diphenyl diseleniumide reverses cadmium-induced oxidative damage on mice tissues. Chem Biol Interact 151(3):159–165. CrossRefGoogle Scholar
  54. Sasakura C, Suzuki KT (1998) Biological interaction between transition metals (Ag, Cd and Hg), seleniumide/sulfi de and seleniumoprotein P. J Inorg Biochem 71(3-4):159–162. CrossRefGoogle Scholar
  55. Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antiox Redox Signal 12(7):839–849. CrossRefGoogle Scholar
  56. Sies H (1993) Strategies of antioxidant defence. Eur J Biochem 215(2):213–219. CrossRefGoogle Scholar
  57. Sørmo EG, Ciesielski TM, Øverjordet IB, Lierhagen S, Eggen GS, Berg T, Jenssen BM (2011) Selenium moderates mercury toxicity in freeranging freshwater fish. Environ Sci Technol 45(15):6561–6566. CrossRefGoogle Scholar
  58. Srebočan E, Janicki Z, Prevendar Crnić A, Tomljanović K, Šebečić M, Konjević D (2012) Cadmium, lead and mercury concentrations in selected red deer (Cervus elaphus L.) tissues from north-eastern Croatia. J Environ Sci Health A 47(13):2101–2108. CrossRefGoogle Scholar
  59. Srebočan E, Pompe-Gotal J, Konjević D, Prevendar-Crnić A, Popović N, Kolić E (2006) Cadmium in fallow deer tissue. Veterinarski Arhiv 76:S143–S150Google Scholar
  60. Srebočan E, Prevendar Crnić A, Ekert Kabalin A, Lazarus M, Jurasović J, Tomljanović K, Andreić D, Strunjak Perović I, Čož-Rakovac R (2011) Cadmium, lead and mercury concentration in tissues of roe deer (Capreolus capreolus L.) and wild boar (Sus scrofa L.) from lowland Croatia. Czech J Food Sci 29:624–633CrossRefGoogle Scholar
  61. Sunde RA (2012) Seleniumium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease, 11th edn. Lippincott Williams & Wilkins, Philadelphia, pp 225–237Google Scholar
  62. Surai PF (2002) Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. Worlds Poult Sci J 58(04):431–450. CrossRefGoogle Scholar
  63. Thompson L (2012) Lead. In: Gupta R (ed) Veterinary toxicology: basic and clinical principles, 2nd. Elsevier Academic Press, New York, pp 522–526. CrossRefGoogle Scholar
  64. Thomson CD (1998) Selenium speciation in human body fluids. Analyst 123(5):827–831. CrossRefGoogle Scholar
  65. Toman R, Massanyi P (1996) Cadmium in selected organs of fallow-deer (dama dama), sheep (ovis aries), brown hare (lepus europaeus) and rabbit (oryctolagus cuniculus) in Slovakia. J Env Sci Heath Part A 31(5):1043–1051Google Scholar
  66. Underwood EJ (1977) Selenium. In: Underwood EJ (ed) Trace elements in human and animal nutrition, 4th edn. Academic press, New York, pp 302–346CrossRefGoogle Scholar
  67. Usuki F, Yamashita A, Fujimura M (2011) Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem 286:6641–6649CrossRefGoogle Scholar
  68. Vengušt G, Vengušt A (2004) Some minerals as well as trace and toxic elements in livers of fallow deer (Dama dama L.) in Slovenia. Eur J Wildl Res 50(2):59–61. CrossRefGoogle Scholar
  69. Viita LM, Mutanen ML, Mykkanen HM (1989) Selenium-iron interaction in young women with low selenium status. J Hum Nutr Diet 2(1):39–42. CrossRefGoogle Scholar
  70. Vikoren T, Kristoffersen AB, Lierhagen S, Handeland K (2011) A comparative study of hepatic trace element levels in wild moose, roe deer, and reindeer from Norway. J Wildl Dis 41:569–579CrossRefGoogle Scholar
  71. Wang M, Fu H, Xiao Y, Ai B, Wei Q, Wang S, Liu T, Ye L, Hu Q (2013) Effects of low-level organic seleniumium on lead-induced alternation in neural cell adhesion molecules. Brain Res 1530:76–81. CrossRefGoogle Scholar
  72. Wieczorek-Dabrowska M, Tomza-Marciniak A, Pilarczyk B, Baliska-Ramisc A (2013) Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. Chem Ecol 29(2):100–110. CrossRefGoogle Scholar
  73. Xie Y, Chiba M, Shinohara A, Watanabe H, Inaba Y (1998) Studies on lead binding protein and interaction between lead and selenium in the human erythrocytes. Ind Health 36:234–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Croatian Hunting AssociationZagrebCroatia
  2. 2.J.J. Strossmayer University from Osijek Faculty of Agriculture in OsijekOsijekCroatia
  3. 3.Veterinary Research InstituteBrnoCzech Republic

Personalised recommendations