Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges

  • Emile S. Massima Mouele
  • Olanrewaju Ojo. Fatoba
  • Omotola Babajide
  • Kassim O. Badmus
  • Leslie F. Petrik
Review Article
  • 27 Downloads

Abstract

Advanced oxidation processes (AOPs) particularly non-thermal plasmas based on electrical discharges have been widely investigated for water and wastewater treatment. Dielectric barrier discharges (DBDs) generate large amounts of selective and non-selective reactive oxygen species (ROS) such as ozone, hydrogen peroxide, atomic oxygen, superoxide molecular anions and hydroxyl radicals, having been proved to be efficient for water decontamination among various forms of electrical discharge systems. The detection and quantification methods of these oxygen species in non-thermal plasmas have been reviewed. However, their application in dielectric barrier discharge has not been well studied. It is therefore imperative to summarise the various detection and quantification methods for oxygen-based species determination in AOPs, aqueous systems and non-thermal plasma processes. Thereafter, reviewed methods are suggested for the determination of ROS in DBD configurations to understand the consumption trend of these oxidants during treatment of water effluents and to evaluate the performance of the treatment reactor configuration towards the degradation of targeted pollutants.

Keywords

AOPs DBD Quantification Measurement Reactive oxygen species 

References

  1. Abdelmelek SB, Greaves J, Ishida KP, Cooper WJ, S.W. (2011) Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. Environ Sci Technol 45(8):3665–3671.  https://doi.org/10.1021/es104287n CrossRefGoogle Scholar
  2. Atkins P., de Paula J. (2009) Elements of physical chemistry, 5th edn., Oxford University Press, OxfordGoogle Scholar
  3. Awad MI, Ohsaka T (2004) Electroanalysis of peroxone. Electrochem Commun 6(11):1135–1140.  https://doi.org/10.1016/j.elecom.2004.09.005 CrossRefGoogle Scholar
  4. Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim K-N, Fridman A, Choi EH (2015) Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Scientific Reports 5:9332.  https://doi.org/10.1038/srep09332 CrossRefGoogle Scholar
  5. Backa S, Jansbo K, Reitberger T (1997) Detection of hydroxyl radicals by a chemiluminescence method—a critical review. Holzforschung-Int J Biol Chem Phys Technol Wood 51(6):557–564Google Scholar
  6. Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15(4):449–456.  https://doi.org/10.1016/0043-1354(81)90054-3 CrossRefGoogle Scholar
  7. Badmus KO, Tijania JO, Ezeb CP, Fatobaa OO, Petrik LF (2016) Quantification of radicals generated in a sonicator. Anal Bioanal Chem Res 3(1):139–147Google Scholar
  8. Barder H, Hoigne J (1982) Determination of ozone in water by the indigo method. A submitted Standard Ozone: Science & Engineering 4:169–176Google Scholar
  9. Ben-Jebria A, Hu S-C, Ultman JS (1990) Improvements in a chemiluminescent ozone analyzer for respiratory applications. Rev Sci Instrum 61(11):3435–3439.  https://doi.org/10.1063/1.1141598 CrossRefGoogle Scholar
  10. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Zvereva G (2016) Plasma–liquid interactions: a review and roadmap. Plasma sources science and technology, 25(5), 053002-. [053002].  https://doi.org/10.1088/0963-0252/25/5/053002
  11. Brame J, Long M, Li Q, Alvarez P (2014) Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Res 60:259–266.  https://doi.org/10.1016/j.watres.2014.05.005 CrossRefGoogle Scholar
  12. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D: Appl Phys 053001:28.  https://doi.org/10.1088/0022-3727/42/5/053001
  13. Buettner GR (1987) Spin trapping-electron-spin-resonance parameters of spin adducts. Free Radical Bio Med 3(4):259–303Google Scholar
  14. Calderon PB, Roberfroid MB (1995) Free radicals and oxidation phenomena in biological systems. CRC press, New YorkGoogle Scholar
  15. Cathey C., Jeremy Cain, Hai Wang, Martin A. Gundersen, Campbell Carter, Michael Ryan, (2008). OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane–air mixtures. Combustion and Flame 154 715–727Google Scholar
  16. Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58(4):873–879.  https://doi.org/10.2166/wst.2008.429 CrossRefGoogle Scholar
  17. Cheng H et al (2007a) Non-thermal plasma technology for degradation of organic compounds in wastewater control: a critical review. J Environ Eng Manage 17(6):427–433Google Scholar
  18. Cheng S-A, Fung WK, Chan KY, Shen PK (2003) Optimizing electron spin resonance detection of hydroxyl radical in water. Chemosphere 52(10):1797–1805.  https://doi.org/10.1016/S0045-6535(03)00369-2 CrossRefGoogle Scholar
  19. Cheng Z et al. (2007b) Electron spin resonance estimation of hydroxyl radical scavenging capacity for lipophilic antioxidants electron spin resonance estimation of hydroxyl radical scavenging capacity for lipophilic antioxidantsGoogle Scholar
  20. Cohn C a, Simon SR, Schoonen MA (2008) Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals. Particle fibre Toxicol 5(1):2.  https://doi.org/10.1186/1743-8977-5-2 CrossRefGoogle Scholar
  21. D, H.W.M & Nakadoi T (2016) Fluorophotometric determination of trace amounts of atmospheric ozone. 2470 (June), pp. 1–5Google Scholar
  22. Diez L, Livertoux MH, Stark AA, Wellman-Rousseau M, Leroy P (2001) High-performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation during in vitro experiments involving thiols. J Chromatogr B Biomed Sci Appl 763(1–2):185–193.  https://doi.org/10.1016/S0378-4347(01)00396-6 CrossRefGoogle Scholar
  23. Doll T, Fuchs A, Eisele I, Faglia G, Groppelli S, Sberveglieri G (1998) Conductivity and work function ozone sensors based on indium oxide. Sensors Actuators B Chem 49(1–2):63–67.  https://doi.org/10.1016/S0925-4005(98)00037-9 CrossRefGoogle Scholar
  24. Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Edition 15(5):327–328.  https://doi.org/10.1021/i560117a011 CrossRefGoogle Scholar
  25. Finkelstein, E., 1980. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. Journal of the American, (12), pp. 4994–4999Google Scholar
  26. Fisher SC, Schoonen MA, Brownawell BJ (2012) Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries. Geochem Trans 13(1):3.  https://doi.org/10.1186/1467-4866-13-3 CrossRefGoogle Scholar
  27. Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In Free Radicals in Biology:85–133.  https://doi.org/10.1016/B978-0-12-566502-5.50010-X
  28. Foster EJ (2017) Plasma-based water purification: challenges and prospects for the future. Physics of Plasmas 24:055501CrossRefGoogle Scholar
  29. Franclemont J, Thagard SM (2014) Pulsed electrical discharges in water: can non-volatile compounds diffuse into the plasma channel? Plasma Chem Plasma Process 34(4):705–719.  https://doi.org/10.1007/s11090-014-9550-4 CrossRefGoogle Scholar
  30. Franklin AC, Salmon LG, Wolfson JM, Christoforou CS (2004) Ozone measurements in South Carolina using passive samplers. J Air Waste Manag Assoc (1995) 54(10):1312–1320.  https://doi.org/10.1080/10473289.2004.10470997 CrossRefGoogle Scholar
  31. Schiavon G, Zotti G, Bontempelli G, Farnia G, G. S (1990a) Amperometric monitoring of ozone in gaseous media by gold electrodes supported on ion exchange membranes (solid polymer electrolytes). Anal Chem 62(3):293–298CrossRefGoogle Scholar
  32. Gilmour CR & Madhumita Ray S (2012) Water treatment using advanced oxidation processes: application perspectives graduate program in chemical and biochemical engineeringGoogle Scholar
  33. Glaze WH (1986) Reaction products of ozone a review. Environ Health Perspect 69(7):151–157.  https://doi.org/10.1289/ehp.8669151 CrossRefGoogle Scholar
  34. Gorbanev Y, O’Connell D, Chechik V (2016) Non-thermal plasma in contact with water: the origin of species. Chem Eur J 22(10):3496–3505.  https://doi.org/10.1002/chem.201503771 CrossRefGoogle Scholar
  35. Gołkowski M et al. (2012) Hydrogen-peroxide-enhanced nonthermal plasma effluent for biomedical applications. 40(8), pp. 1984–1991Google Scholar
  36. Van Gough D, Wolosiuk A, Braun PV (2009) Mesoporous ZnS nanorattles: programmed size selected access to encapsulated enzymes. Nano Lett 9(5):1994–1998.  https://doi.org/10.1021/nl900264n CrossRefGoogle Scholar
  37. Gupta SB (2007) Investigation of a physical disinfection process based on pulsed underwater corona discharges. (September)Google Scholar
  38. Hamdan A, Cha MS (2016) The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water. J Phys D Appl Phys 49(24):245203–245215.  https://doi.org/10.1088/0022-3727/49/24/245203 CrossRefGoogle Scholar
  39. He D, Miller CJ, Waite TD (2014) Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production. J Catal 317:198–205.  https://doi.org/10.1016/j.jcat.2014.06.016 CrossRefGoogle Scholar
  40. Helaleh MIH et al (2002) Development of passive sampler technique for ozone monitoring. Estimation of indoor and outdoor ozone concentration. Talanta 58(4):649–659.  https://doi.org/10.1016/S0039-9140(02)00375-2 CrossRefGoogle Scholar
  41. Hodgson a W, Jacquinot P, Hauser PC (2000) Amperometric sensing of ethylene oxide in the gas phase. Anal Chem 72(10):2206–2210CrossRefGoogle Scholar
  42. Hoebeke M, Schuitmaker HJ, Jannink LE, Dubbelman TMAR, Jakobs A, Vorst A (1997) Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a. Photochem Photobiol 66(4):502–508.  https://doi.org/10.1111/j.1751-1097.1997.tb03180.x CrossRefGoogle Scholar
  43. Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Kroesen GMW (1999a) Gas phase corona discharges for oxidation of phenol in an aqueous solution. J Phys D Appl Phys 32(24):L133–L137.  https://doi.org/10.1088/0022-3727/32/24/103 CrossRefGoogle Scholar
  44. Hoeben, W. F. L. M.; van Veldhuizen, E. M.; Rutgers, W. R.; Kroesen, G.M.W., 1999b. Gas phase corona discharges for oxidation of phenol in an aqueous solution. J. Phys. D: Appl. Phys., 32, p.L133Google Scholar
  45. Hong YJ, Nam 1CJ, Song KB, Cho GS, Uhm HS, Choi DI, Choi EH (2012) Measurement of hydroxyl radical density generated from the atmospheric pressure bioplasma jet. J Instrum:C03046Google Scholar
  46. Huang H, Dasgupta PK (1997) Renewable liquid film-based electrochemical sensor for gaseous hydroperoxides. Talanta, Volume, pp 605–615Google Scholar
  47. Iliadis D, Brian J, Millar (2013) Ozone and its use in periodontal treatment. Open J Stomatology 3(02):197–202. http://www.scirp.org/journal/ojst/.  https://doi.org/10.4236/ojst.2013.32034 CrossRefGoogle Scholar
  48. Iqbal M, Bhatti IA, Ahmad I (2013) Photo-degradation of the methyl blue: optimization through response surface methodology using rotatable center composite design. International Journal of Basic and Applied Sciences 2(2):145–152CrossRefGoogle Scholar
  49. Jana AK, Chatterjee S (1995) Estimation of hydroxyl free radicals produced by ultrasound in Fricke solution used as a chemical dosimeter. Ultrason Sonochem 2(2):S87–S91.  https://doi.org/10.1016/1350-4177(95)00025-2 CrossRefGoogle Scholar
  50. Ji Y, Zhou L, Zhang Y, Ferronato C, Brigante M, Mailhot G, Yang X, Chovelon JM (2013) Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices. Water Res 47(15):5865–5875.  https://doi.org/10.1016/j.watres.2013.07.009 CrossRefGoogle Scholar
  51. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368.  https://doi.org/10.1016/j.cej.2013.09.090 CrossRefGoogle Scholar
  52. Johnson, D.C., Napp, D.T. & Bruckenstein, S., 1967. Electrochemical reduction of ozone in acidic media. 111 (11)Google Scholar
  53. Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41(1):3–30.  https://doi.org/10.1016/0304-3894(94)00099-3 CrossRefGoogle Scholar
  54. Joshi SG et al. (2015) Microarray analysis of transcriptomic response of Escherichia coli to nonthermal plasma-treated PBS solution. 6(6), pp. 49–62Google Scholar
  55. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011a) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062.  https://doi.org/10.1128/AAC.01002-10 CrossRefGoogle Scholar
  56. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011b) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062.  https://doi.org/10.1128/AAC.01002-10 CrossRefGoogle Scholar
  57. Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ichiki R, Ohkubo T, Kocik M, Mizeraczyk J (2011) Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol 20(3):034010 (8pp).  https://doi.org/10.1088/0963-0252/20/3/034010 CrossRefGoogle Scholar
  58. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci 104(21):8897–8901.  https://doi.org/10.1073/pnas.0609568104 CrossRefGoogle Scholar
  59. Kim YH, Hong YJ, Youn Baik K, Gi CK, Choi JJ, Cho GS, Uhm HS, Do YK, Choi EH (2014) Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chem Plasma Process 34(3):457–472.  https://doi.org/10.1007/s11090-014-9538-0 CrossRefGoogle Scholar
  60. Kim S et al (2000) Ozone sensing properties of In2O3-based semiconductor thick films. Sensors Actuators 66(1-3):59–62.  https://doi.org/10.1016/S0925-4005(99)00468-2 CrossRefGoogle Scholar
  61. Kirk RE, Othmer DF (1996) Encyclopedia of chemical technology. 4th ed. Vol (London:Wiley-Interscience, ISBN 0-471-52686-X, Ozone), p.,953-994Google Scholar
  62. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417.  https://doi.org/10.1016/j.envint.2008.07.009 CrossRefGoogle Scholar
  63. Knake R, Hauser PC (2002a) Sensitive electrochemical detection of ozone. Anal Chim Acta 459(2):199–207.  https://doi.org/10.1016/S0003-2670(02)00121-6 CrossRefGoogle Scholar
  64. Knake R, Hauser PC (2002b) Sensitive electrochemical detection of ozone. January 459:199–207Google Scholar
  65. Knake R, Jacquinot P, Hauser PC (2001) Amperometric detection of gaseous formaldehydein the ppb range. Electroanalysis 13(8-9):631–634.  https://doi.org/10.1002/1521-4109(200105)13:8/9<631::AID-ELAN631>3.0.CO;2-Z CrossRefGoogle Scholar
  66. Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges. Principle and applications. J Phys IV France 7:C4-47–C4-66.  https://doi.org/10.1051/jp4:1997405
  67. Lee DS et al (1999) Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sensors Actuators B Chem 60(1):57–63.  https://doi.org/10.1016/S0925-4005(99)00244-0 CrossRefGoogle Scholar
  68. Li J et al (2008) Atmospheric ozone measurement with an inexpensive and fully automated porous tube collector-colorimeter. TalantaGoogle Scholar
  69. Li S, Gong Y, Yang Y, He C, Hu L, Zhu L, Sun L, Shu D (2015) Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration. Chem Eng J 260:231–239.  https://doi.org/10.1016/j.cej.2014.09.032 CrossRefGoogle Scholar
  70. Li, Y. et al., 2012. Pharmaceutical residues in wastewater treatment plants and surface waters in BangkokGoogle Scholar
  71. Li Y, Zhu H, Trush MA (1999) Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol. Biochimica et Biophysica Acta-General Subjects 1428(1):1–12.  https://doi.org/10.1016/S0304-4165(99)00040-9 CrossRefGoogle Scholar
  72. Liao Y, Brame J, Que W, Xiu Z, Xie H, Li Q, Fabian M, Alvarez PJ (2013) Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2 nanotube arrays. J Hazard Mater 260:434–441.  https://doi.org/10.1016/j.jhazmat.2013.05.047 CrossRefGoogle Scholar
  73. Locke BR, Shih K-Y (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20(3):034006.  https://doi.org/10.1088/0963-0252/20/3/034006 CrossRefGoogle Scholar
  74. Lodge, P.J. ed., 1988. Methods of Air Sampling and Analysis 3rd ed. Florida: CRC pressGoogle Scholar
  75. Lukeš, P., 2001. Institute of Plasma Physics, As Cr Water treatment by pulsed streamer corona dischargeGoogle Scholar
  76. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84.  https://doi.org/10.1016/j.physrep.2016.03.003 CrossRefGoogle Scholar
  77. Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82(10):1422–1430.  https://doi.org/10.1016/j.chemosphere.2010.11.052 CrossRefGoogle Scholar
  78. Magureanu M, Dobrin D, Mandache NB, Bradu C, Medvedovici A, Parvulescu VI (2013) The mechanism of plasma destruction of enalapril and related metabolites in water. Plasma Process Polym 10(5):459–468.  https://doi.org/10.1002/ppap.201200146 CrossRefGoogle Scholar
  79. Magureanu M, Mandache NB & Parvulescu VI (2015) Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water ResGoogle Scholar
  80. Mano CM et al (2014) Excited singlet molecular O2 ((1)Δg) is generated enzymatically from excited carbonyls in the dark. Sci Rep 4:5938CrossRefGoogle Scholar
  81. Mark PC, Schluep M (2001) Destruction of benzene with non–thermal plasma in dielectric barrier discharge reactors. Environ Prog 20(3):151–156CrossRefGoogle Scholar
  82. Marotta E, Schiorlin M, Ren X, Rea M, Paradisi C (2011) Advanced oxidation process for degradation of aqueous phenol in a dielectric barrier discharge reactor. Plasma Process Polym 8(9):867–875.  https://doi.org/10.1002/ppap.201100036 CrossRefGoogle Scholar
  83. Maruo YY, Akaoka K, Nakamura J (2010) Development and performance evaluation of ozone detection paper using azo dye orange I: effect of pH. Sensors Actuators B Chem 143(2):487–493.  https://doi.org/10.1016/j.snb.2009.09.042 CrossRefGoogle Scholar
  84. Maruya KA et al (2009) Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Sensors Actuators B Chem 11(2):1–131Google Scholar
  85. Di Mascio P, Sies H (1989) Quantification of singlet oxygen generated by thermolysis of 3, 3′-(1, 4-naphthylene) dipropionate endoperoxide. Monomol and dimol photoemission and the effects of 1,4-diazabicyclo[2.2.2]octane. J Am Chem Soc 111(8):2909–2914.  https://doi.org/10.1021/ja00190a027 CrossRefGoogle Scholar
  86. Mašláni A. and Sember V. (2014). Emission spectroscopy of OH radical in water-argon arc plasma jet. Hindawi Publishing Corporation, Journal of Spectroscopy. Volume 2014, Article ID 952138, 6 pages, doi: https://doi.org/10.1155/2014/952138, 952136
  87. Massima MES (2014) Water treatment using electrohydraulic discharge system. University of the Western CapeGoogle Scholar
  88. Metzger, M., 2009. Ozone applications and measurements. Water Conditioning & Purification Google Scholar
  89. Miller CJ, Rose AL, Waite TD (2011) Phthalhydrazide chemiluminescence method for determination of hydroxyl radical production: modifications and adaptations for use in natural systems. Anal Chem 83(1):261–268.  https://doi.org/10.1021/ac1022748 CrossRefGoogle Scholar
  90. Milne L, Stewart I, Bremner DH (2013) Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter. Ultrason Sonochem 20(3):984–989.  https://doi.org/10.1016/j.ultsonch.2012.10.020 CrossRefGoogle Scholar
  91. Mitrovics J a N et al (1998) Modular sensor systems for gas sensing and odor monitoring: the MOSES concept. Acc Chem Res 31(5):307–315.  https://doi.org/10.1021/ar970064n CrossRefGoogle Scholar
  92. Miyata T, Hikosata T, Minami T (2000) Surf Coat Technol 126(2–3):91–300Google Scholar
  93. Montesinos, V.N. et al., 2015. Detection and quantification of reactive oxygen species (ROS) in indoor air. Talanta Google Scholar
  94. Montgomery J, Ste-Marie L, Boismenu D, Vachon L (1995) Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Free Radic Biol Med 19(6):927–933.  https://doi.org/10.1016/0891-5849(95)02004-T CrossRefGoogle Scholar
  95. Mouele ESM, Tijani JO, Fatoba OO, Petrik LF (2015) Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—a critical review. Environ Sci Pollut Res 22(23):18345–18362.  https://doi.org/10.1007/s11356-015-5386-6 CrossRefGoogle Scholar
  96. Nakagawa H, Okazaki S, Asakura S, Shimizu H, Iwamoto I (2001) A new ozone sensor for an ozone generator. Sensors Actuators B Chem 77(1–2):543–547.  https://doi.org/10.1016/S0925-4005(01)00696-7 CrossRefGoogle Scholar
  97. Nehra V, Kumar A, Dwivedi HK (2008) Atmospheric non-thermal plasma sources. Int J Eng 2(1):53–68Google Scholar
  98. Obradović B., Kovačević1 V, Sretenović G, Dojčinović B., Roglić G., Manojlović D., M. K. (2015) Title:32nd ICPIG, July 26-31, IașiGoogle Scholar
  99. Ono R, Oda T (2002) Measurement of hydroxyl radicals in pulsed corona discharge. J Electrost 55(3-4):333–342.  https://doi.org/10.1016/S0304-3886(01)00215-7 CrossRefGoogle Scholar
  100. Onesios KM, Yu JT, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20(4):441–466.  https://doi.org/10.1007/s10532-008-9237-8 CrossRefGoogle Scholar
  101. Parrish DD, Fehsenfeld FC (2000) Methods for gas-phase measurements of ozone, ozone precursors and aerosol precursors. Atmos Environ 34(12–14):1921–1957.  https://doi.org/10.1016/S1352-2310(99)00454-9 CrossRefGoogle Scholar
  102. Pearson R (1990) Measuring ambient ozone with high sensitivity and bandwidth. Rev Sci Instrum 61(2):907–916.  https://doi.org/10.1063/1.1141462 CrossRefGoogle Scholar
  103. Penrose WR, Pan L, Stetter JR, Ollison WM (1995) Sensitive measurement of ozone using amperometric gas sensors. Anal Chim Acta 313(3):209–219.  https://doi.org/10.1016/0003-2670(95)00251-T CrossRefGoogle Scholar
  104. Peralta E, Roa G, Hernandez-Servin JA, Romero R, Balderas P, Natividad R (2014) Hydroxyl radicals quantification by UV spectrophotometry. Electrochim Acta 129:137–141.  https://doi.org/10.1016/j.electacta.2014.02.047 CrossRefGoogle Scholar
  105. Qiu S, He D, Ma J, Liu T, Waite TD (2015) Kinetic modeling of the electro-Fenton process: quantification of reactive oxygen species generation. Electrochim Acta 176:51–58.  https://doi.org/10.1016/j.electacta.2015.06.103 CrossRefGoogle Scholar
  106. Quiroz MA, Sánchez-Salas JL, Reyna S, Bandala ER, Peralta-Hernández JM, Martínez-Huitle CA (2014) Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material. J Hazard Mater 268:6–13.  https://doi.org/10.1016/j.jhazmat.2013.12.050 CrossRefGoogle Scholar
  107. Reddy PMK, Mahamma dunnisa S, Subrahmanyam C (2014) Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: a green approach for the treatment of pesticide contaminated water. Chem Eng J 238:157–163.  https://doi.org/10.1016/j.cej.2013.08.087 CrossRefGoogle Scholar
  108. Rehman AU, Cser K, Sass L, Vass I (2013) Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. BBA-Bioenergetics 1827(6):689–698.  https://doi.org/10.1016/j.bbabio.2013.02.016 CrossRefGoogle Scholar
  109. Rong S, Sun Y, Zhao Z, Wang H (2014) Dielectric barrier discharge induced degradation of diclofenac in aqueous solution. Water Sci Technol 69(1):76–83.  https://doi.org/10.2166/wst.2013.554 CrossRefGoogle Scholar
  110. Sahni M (2006). Analysis of chemical reactions in pulsed streamer discharges: an experimental study. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2110
  111. Shih K-Y, Locke B (2010) Chemical and physical characteristics of pulsed electrical discharge within gas bubbles in aqueous solutions. Plasma Chem Plasma Process 30(1):1–20.  https://doi.org/10.1007/s11090-009-9207-x CrossRefGoogle Scholar
  112. Sauter D et al (2000) Development of modular ozone sensor system for application in practical use. Sensors Actuators B Chem 69(1):1–9CrossRefGoogle Scholar
  113. Schiavon G, Zotti G, Bontempelli G, Farnia G, Sandona G (1990b) Amperometric monitoring of ozone in gaseous media by gold electrodes supported on ion exchange membranes (solid polymer electrolytes). Anal Chem 62(3):293–298.  https://doi.org/10.1021/ac00202a013 CrossRefGoogle Scholar
  114. Sedlak DL, Andren AW (1991) Oxidation of chlorobenzene with Fenton’s reagent. Environ Sci Technol 25(4):777–782.  https://doi.org/10.1021/es00016a024 CrossRefGoogle Scholar
  115. Smart RB, Lowry JH, K.H.M (1979) Analysis for ozone and residual chlorine by differential pulse polarography of phenylarsine oxide. Environ Sci and Tech 13(1):89–92.  https://doi.org/10.1021/es60149a014 CrossRefGoogle Scholar
  116. von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, LondonGoogle Scholar
  117. Stanley JH, Johnson JD, Carolina N (1979) Amperometric membrane electrode for measurement of ozone in water. Anal Chem 51(13):2144–2147.  https://doi.org/10.1021/ac50049a020 CrossRefGoogle Scholar
  118. Steiner MG, Babbs CF (1990) Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide. Arch Biochem Biophys 278(2):478–481.  https://doi.org/10.1016/0003-9861(90)90288-A CrossRefGoogle Scholar
  119. Stergiou DV, Prodromidis MI, Efstathiou CE (2010a) On the possibility of a pH-metric determination of ozone. Electrochem Commun 12(2):262–265.  https://doi.org/10.1016/j.elecom.2009.12.010 CrossRefGoogle Scholar
  120. Stergiou DV, Prodromidis MI, Efstathiou CE (2010b) Electrochemistry communications on the possibility of a pH-metric determination of ozone. Electrochem Commun 12(2):262–265CrossRefGoogle Scholar
  121. Sun L, Yao Y, Wang L, Mao Y, Huang Z, Yao D, Lu W, W. C (2014b) Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst. Chem Eng J 240:413–419.  https://doi.org/10.1016/j.cej.2013.12.009 CrossRefGoogle Scholar
  122. Takayanagi T, Su XL, Dasgupta PK, Martinelango K, Li G, al-Horr RS, Shaw RW (2003) Chemiluminometric measurement of atmospheric ozone with photoactivated chromotropic acid. Anal Chem 75(21):5916–5925.  https://doi.org/10.1021/ac034723n CrossRefGoogle Scholar
  123. Tijani JO, Fatoba OO, Petrik LF (2013) A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut 224(11).  https://doi.org/10.1007/s11270-013-1770-3
  124. Tichonovas M, Krugly E, Racys V, Hippler R, Kauneliene V, Stasiulaitiene I, Martuzevicius D (2013) Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chem Eng J 229:9–19.  https://doi.org/10.1016/j.cej.2013.05.095 CrossRefGoogle Scholar
  125. Tochikubo F, Uchida S, Watanabe T (2004) Study on decay characteristics of OH radical density in pulsed discharge in Ar/H2O. Jpn J Appl Phys 43(1):315–320CrossRefGoogle Scholar
  126. Tosi MF, Hamedani A (1992) A rapid, specific assay for superoxide release from phagocytes in small volumes of whole blood. Am J Clin Pathol 97(4):566–573.  https://doi.org/10.1093/ajcp/97.4.566 CrossRefGoogle Scholar
  127. Uchiyama S, Ikarugi T, Mori M, Kasama K, Ishikawa Y, Kaneko M, Umezawa A (1993) Highly sensitive electrochemical sensor for ozone in water using porous carbon felt electrode. Electroanalysis 5(2):121–124.  https://doi.org/10.1002/elan.1140050205 CrossRefGoogle Scholar
  128. Uher G, Gilbert E, Siegfried U, Eberle H (1991) Determination of hydrogen peroxide in presence of organic peroxides. Vom Wasser 76:225–234Google Scholar
  129. Ullmann (1991) Encyclopedia of industrial chemistry 5th Edn., VolumeA18,(; einheim: Verlag Chemie, ISBN 3-527-20118-1, Ozone,), pp. 349–357Google Scholar
  130. Vanraes P., Anton Y. Nikiforov, Christophe Leys (2016). Electrical discharge in water treatment technology for micropollutant decomposition, Plasma science and technology-progress in physical states and chemical reactions, Prof. Tetsu Mieno (Ed.), INTECH, DOI: https://doi.org/10.5772/61830. Available from: https://www.intechopen.com/books/plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions/electrical-discharge-in-water-treatment-technology-for-micropollutant-decomposition
  131. Vorac J, Dvorak P, Prochazka V, Ehlbeck J, Reuter S (2013) Measurement of hydroxyl radical (OH) concentration in an argon RF plasma jet by laser-induced fluorescence. Plasma Sources Science and Technology 22:025016 (9pp).  https://doi.org/10.1088/0963-0252/22/2/025016 CrossRefGoogle Scholar
  132. Vyhnánková E et al (2014) Influence of electrode material on hydrogen peroxide generation by DC pinhole discharge. Open Chemistry 13(1):218–223CrossRefGoogle Scholar
  133. Wang Q, Ding F, Zhu N, Li H, He P, Fang Y (2003) Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection. J Chromatogr A 1016(1):123–128.  https://doi.org/10.1016/S0021-9673(03)01294-9 CrossRefGoogle Scholar
  134. Watanabe S et al (2010) Performance characterization of a new water treatment system integrating ozonizer and diffuser. Int J Plasma Environ Sci Technol 4(1):52Google Scholar
  135. Von Woedtke T et al (2004) Sporicidal efficacy of hydrogen peroxide aerosol. Pharmazie 59(3):207–211Google Scholar
  136. Wu D et al (2011) Species from ballast water. Je Sc Sc 23(3):513–519Google Scholar
  137. Wu H, Sun P, Feng H, Zhou H, Wang R, Liang Y, Lu J, Zhu W, Zhang J, Fang J (2012a) Reactive oxygen species in a non-thermal plasma microjet and water system: generation, conversion, and contributions to bacteria inactivation—an analysis by electron spin resonance spectroscopy. Plasma Process Polym 9(4):417–424.  https://doi.org/10.1002/ppap.201100065 CrossRefGoogle Scholar
  138. Wu, H. et al., 2012b. Reactive oxygen species in a non-thermal plasma microjet and water system: generation, conversion, and contributions to bacteria inactivation—an analysis by electron spin resonance spectroscopy. Plasma Processes and Polymers, 9(4), pp. 417–424.Google Scholar
  139. Xie L, Lu J & Yan H (1998) A solid-state ozone sensor based on solid polymer electrolyte., pp. 842–845Google Scholar
  140. Xiong Q, Nikiforov AY, Li L, Vanraes P, Britun N, Snyders R, Lu XP, Leys C (2012) Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet. Eur Phys J D 66(11):281.  https://doi.org/10.1140/epjd/e2012-30474-8 CrossRefGoogle Scholar
  141. Yang Y, Jin Jiang, Xinglin Lu, Jun Ma, and Yongze Liu, (2015) Production of sulfate radical and hydroxyl radical by reaction of ozone with Peroxymonosulfate: A novel advanced oxidation process. Environmental Science & Technology, 49, 7330−7339Google Scholar
  142. Yimit A, Itoh K, Murabayshi M (2002) A highly sensitive device for the determination of ozone based on glass optical waveguide. Electrochemistry 70(10):798–801Google Scholar
  143. Yonemori S, Ono R (2014) Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence. J Phys D: Appl Phys 47(12):125401 (10pp).  https://doi.org/10.1088/0022-3727/47/12/125401 CrossRefGoogle Scholar
  144. Yost AD, Joshi SG (2015) Atmospheric nonthermal plasma-treated PBS inactivates Escherichia coli by oxidative DNA damage. PLoS One 10(10):1–20CrossRefGoogle Scholar
  145. Zhang S, Wang D, Zhou L, Zhang X, Fan P, X. Q (2013) Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material: multi-walled carbon nanotubes immobilized on zerovalent iron plates (Fe0-CNTs). Chem Eng J 217:99–107.  https://doi.org/10.1016/j.cej.2012.11.103 CrossRefGoogle Scholar
  146. Zimmer C (2013) The mystery of Earth’s oxygen. The New York times Google Scholar
  147. Zurich ETH & Zimmermann SG (2011) Enhanced wastewater treatment by ozone and ferrate: kinetics, transformation products and full-scale ozonation. (19615)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environmental and Nano Sciences (ENS) Research Group, Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa
  2. 2.Mechanical Engineering DepartmentCape Peninsula University of TechnologyBellvilleSouth Africa

Personalised recommendations