Environmental Science and Pollution Research

, Volume 25, Issue 12, pp 11646–11660 | Cite as

Wet deposition of atmospheric nitrogen contributes to nitrogen loading in the surface waters of Lake Tanganyika, East Africa: a case study of the Kigoma region

  • Qun Gao
  • Shuang Chen
  • Ismael Aaron Kimirei
  • Lu Zhang
  • Huruma Mgana
  • Prisca Mziray
  • Zhaode Wang
  • Cheng Yu
  • Qiushi Shen
Research Article

Abstract

Lake Tanganyika, an African Great Lake, is a complex tropical ecosystem that has been subjected to extreme climate-related changes in the last century, including seasonal changes in temperature and rainfall, decreased overall annual rainfall, and greater frequency of rainstorms. Atmospheric nitrogen (N) is an important component of the lake’s N loading, but how long-term and seasonal changes in precipitation affect this loading still needs clarification. This study aimed to improve our understanding of the seasonal features of N deposition in the lake, by monitoring atmospheric N deposition concentrations and fluxes from March 2013 to February 2014. There was a significant temporal variation in wet N depositions in the study area. The distribution of the annual rainfall into major (March–May 299.8 mm) and minor (October–December 343.2 mm) rainy seasons translated into 20 and 30% of N deposition. In September and January–February, there was 10 and 12% precipitation, representing 43 and 7% of N deposition in the lake. Nitrogen deposition was highest in September due to farmlands’ burning during the dry season (June–August), leading to N accumulation in the atmosphere. In conclusion, the pattern of N deposition appears to be driven by the unique climatic characteristics of the lake basin and to be closely associated with local anthropogenic activities.

Keywords

Atmospheric nitrogen deposition Deposition flux Seasonal difference Lake Tanganyika Climate change Africa 

Notes

Acknowledgements

We thank the staff of TAFIRI Kigoma who helped with sampling at Lake Tanganyika and laboratory work. We thank Professor Jaonna Tamburino for providing help with written English. We would like to thank Editage (www.editage.com) for English language editing and Publication Support.

Funding information

This research was financially supported by the Construction Plan for Oversea Scientific Education Base of Chinese Academy of Sciences (SAJC201609).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with humans or animals subjects performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Donk EV, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54(6part2):2283–2297.  https://doi.org/10.4319/lo.2009.54.6_part_2.2283 CrossRefGoogle Scholar
  2. Akimoto H, Ohara T, Kurokawa J, Horii N (2006) Verification of energy consumption in China during 1996-2003 by using satellite observational data. Atmos Environ 40(40):7663–7667.  https://doi.org/10.1016/j.atmosenv.2006.07.052 CrossRefGoogle Scholar
  3. Anderson KA, Downing JA (2006) Dry and wet atmospheric deposition of nitrogen, phosphorus, and silicon in an agricultural region. Water Air Soil Pollut 176(1-4):351–374.  https://doi.org/10.1007/s11270-006-9172-4 CrossRefGoogle Scholar
  4. Ayars J, Gao Y (2007) Atmospheric nitrogen deposition to the Mullica River-Great Bay estuary. Mar Environ Res 64:590–600.  https://doi.org/10.1016/j.marenvres.2007.06.004 CrossRefGoogle Scholar
  5. Beirle S, Platt U, Wenig M, Wagner T (2003) Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources. Atmos Chem Phys 3(6):2225–2232.  https://doi.org/10.5194/acp-3-2225-2003 CrossRefGoogle Scholar
  6. Benitez JMG, Cape JN, Heal MR, Dijk NV, Diez AV (2009) Atmospheric nitrogen deposition in southeast Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmos Environ 43(26):4087–4094.  https://doi.org/10.1016/j.atmosenv.2009.04.061 CrossRefGoogle Scholar
  7. Boersma KF, Eskes HJ, Dirksen RJ, van der ARJ, Veefkind JP, Stammes P, Huijnen V, Kleipool QL, Sneep M, Claas J, Leitao J, Richter A, Zhou Y, Brunner D (2011) An improved retrieval of tropospheric NO2 columns from the ozone monitoring instrument. Atmos Meas Tech 4(9):1905–1928.  https://doi.org/10.5194/amt-4-1905-2011 CrossRefGoogle Scholar
  8. Bettez ND, Groffman PM (2013) Nitrogen deposition in and near an urban ecosystem. Environ Sci Technol 47(11):6047–6051.  https://doi.org/10.1021/es400664b CrossRefGoogle Scholar
  9. Bowman WD, Steltzer H (1998) Positive feedbacks to anthropogenic nitrogen deposition in Rocky Mountain Alpine tundra. Ambio 27:514–517Google Scholar
  10. Bootsma HA, Mwita J, Mwichande B, Hecky RE, Kihedu J, Mwambungu J (1999) The atmospheric deposition of nutrients on Lake Malawi/Nyasa. In:Bootsma HA and Hecky RE (eds) water quality report for the SADC/GEF Lake Malawi/Nyasa biodiversity conservation project. SADC/GEF Project Report, Burlington, Ontario, pp 85–111Google Scholar
  11. Bootsma HA, Hecky RE (2003) A comparative introduction to the biology and limnology of the African Great Lakes J Great Lakes Res 29:3–18.doi: https://doi.org/10.1016/S0380-1330 (03)70535–8
  12. Brion N, Nzeyimana E, Goeyens L, Nahimana D, Tungaraza C, Baeyens W (2006) Inorganic nitrogen uptake and river inputs in northern Lake Tanganyika. J Great Lakes Res 32:553–564. https://doi.org/10.3394/0380-1330(2006)32[553,INUARI]2.0.CO;2Google Scholar
  13. Burnett AP, Soreghan MJ, Scholz CA, Brown ET (2011) Tropical east African climate change and its relation to global climate: a record from Lake Tanganyika, tropical East Africa, over the past 90+kyr. Palaeogeogr Palaeoclimatol Palaeoecol 303(1-4):155–167.  https://doi.org/10.1016/j.palaeo.2010.02.011 CrossRefGoogle Scholar
  14. Cohen AS, Bills R, Cocquyt CZ, Caljon AG (1993) The impact of sediment pollution on biodiversity in Lake Tanganyika. Conserv Biol 7(3):667–677.  https://doi.org/10.1046/j.1523-1739.1993.07030667.x CrossRefGoogle Scholar
  15. Cohen AS, Gergurich EL, Kraemer BM, McGlue MM, McIntyre PB, Russell JM, Simmons JD, Swarzenski PW (2016) Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc Natl Acad Sci U S A 113(34):9563–9568.  https://doi.org/10.1073/pnas.1603237113 CrossRefGoogle Scholar
  16. Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37(16):2173–2191.  https://doi.org/10.1016/S1352-2310(03)00133-X CrossRefGoogle Scholar
  17. Coulter GW (1991) Lake Tanganyika and its life. Natural History Museum and Oxford University Press, London, Oxford, and New YorkGoogle Scholar
  18. Coulter GW, Spigel RH (1991) Hydroynamics. In: Coulter GW (ed) Lake Tanganyika and Its Life. Natural History Museum and Oxford University Press, London, Oxford, and New York, pp 49–75Google Scholar
  19. Coulter GW (1994) Lake Tanganyika. In: Martens K, Goddccris B, Coulter G (eds) Speciation in Ancient Lakes. Arch Hydrobiol–BeihErgebn Limnol 44:13–18Google Scholar
  20. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678.  https://doi.org/10.1126/science.250.4988.1669 CrossRefGoogle Scholar
  21. Dolislager LJ, Van Curen R, Pederson JR, Lashgari A, McCauley E (2012) A summary of the Lake Tahoe atmospheric deposition study (LTADS). Atmos Environ 46:618–630.  https://doi.org/10.1016/j.atmosenv.2009.09.020 CrossRefGoogle Scholar
  22. Edmond JM, Stallard RF, Craig H, Craig V, Weiss RF, Coulter GW (1993) Nutrient chemistry of the water column of Lake Tanganyika. Limnol Oceanogr 38(4):725–738.  https://doi.org/10.4319/lo.1993.38.4.0725 CrossRefGoogle Scholar
  23. Elliott EM, Kendall C, Wankel SD, Burns DA, Boyer EW, Harlin K, Bain DJ, Butler TJ (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and northeastern United States. Environ Sci Technol 41(22):7661–7667.  https://doi.org/10.1021/es070898t CrossRefGoogle Scholar
  24. Erisman JW, Galloway JN, Seitzinger SP, Bleeker A, Dise NB, Petrescu AMR, Leach AM, Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc London B Biol Sci 368(1621):116–124.  https://doi.org/10.1098/rstb.2013.0116 CrossRefGoogle Scholar
  25. Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P (2003) Ecological effects of nitrogen deposition in the western United States. Bio Science 53:404–420. https://doi.org/10.1641/0006-3568(2003)053[0404Google Scholar
  26. Fowler D, Coyle M, Skiba U, Sutton MA, Cape J, Reis NS, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc London B Biol Sci 368(1621):91–97.  https://doi.org/10.1098/rstb.2013.0164 Google Scholar
  27. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31(2):64–71.  https://doi.org/10.1579/0044-7447-31.2.64 CrossRefGoogle Scholar
  28. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356. https://doi.org/10.1641/0006-3568(2003)053[0341:TGoogle Scholar
  29. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vorosmarty C (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70(2):153–122.  https://doi.org/10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  30. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science320:889–892. doi: https://doi.org/10.1126/science.1136674
  31. Gichere SK, Sikoyo GM, Saidi AM (2011) Climate change and its effect on cities of eastern African countries. In: Yuen B, Kumssa A (eds) Climate change and sustainable urban development in Africa and Asia. Springer, Berlin, pp 211–220.  https://doi.org/10.1007/978-90-481-9867-2_12 CrossRefGoogle Scholar
  32. Han D, Chen LF, Wu WM, Li SS, Wang ZF (2009) Retrieval of tropospheric nitrogen dioxide vertical column density during the 2008 summer Olympic games in Beijing. Int Geosci Remote Sensing Symp 2:511–514.  https://doi.org/10.1109/IGARSS.2009.5418131 Google Scholar
  33. He CE, Wang X, Liu XJ, Fangmeier A, Christie P, Zhang FS (2010) Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems. Ecol Appl 20(1):80–90.  https://doi.org/10.1890/08-0582.1 CrossRefGoogle Scholar
  34. Hecky RE, Fee EJ (1981) Primary production and rates of algal growth in Lake Tanganyika. Limnol Oceanogr 26(3):532–547.  https://doi.org/10.4319/lo.1981.26.3.0532 CrossRefGoogle Scholar
  35. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33(4part2):796–822.  https://doi.org/10.4319/lo.1988.33.4part2.0796 CrossRefGoogle Scholar
  36. Hinga KR, Keller AA, Oviatt CA (1991) Atmospheric deposition and nitrogen inputs to coastal waters. Ambio 20:256–260Google Scholar
  37. Holmgren K, Öberg H (2006) Climate change in southern and eastern Africa during the past millennium and its implications for societal development. Environ Develop Sustain 8(1):185–195.  https://doi.org/10.1007/s10668-005-5752-5 CrossRefGoogle Scholar
  38. Hulme M, Dorherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2000. Clim Res 17:145–168.  https://doi.org/10.3354/cr017145 CrossRefGoogle Scholar
  39. Järvinen M, Salonen K, Sarvala J, Vuorio K, Virtanen A (1999) The stoichiometry of particulate nutrients in Lake Tanganyika implications for nutrient limitation of phytoplankton. Hydrobiologia 407:81–88.  https://doi.org/10.1023/A:1003706002126 CrossRefGoogle Scholar
  40. Jia JY, Zhang Y, Cai XB, Liu XJ (2009) A dynamic changes of wet deposition of nitrogen in southeast Tibet: taking Lin zhi experiment station as an example. Acta Ecol Sin 29:1907–1913Google Scholar
  41. Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR (2016) Past, present, and future atmospheric nitrogen deposition. J Atmos Sci 73(5):2039–2047.  https://doi.org/10.1175/JAS-D-15-0278.1 CrossRefGoogle Scholar
  42. Kim H, Seagren EA, Davis AP (2003) Engineered bio-retention for removal of nitrate from storm-water runoff. Water Environ Res 75(4):355–367.  https://doi.org/10.2175/106143003X141169 CrossRefGoogle Scholar
  43. Kituyi E, Wandiga SO, Andreae MO, Helas G (2005) Biomass burning in Africa: role in atmospheric change and opportunities for emission mitigation. In: Low PS (ed) Climate Change and Africa, Cambridge, pp 79-89Google Scholar
  44. Kraemer BM, Hook S, Huttula T, Kotilainen P, O’Reilly CM, Peltonen A, Plisnier P, Sarvala J, Tamatamah R, Vadeboncoeur Y, Wehrli B, McIntyre PB (2015) Century-long warming trends in the upper water column of Lake Tanganyika. PLoS One 10(7):e0132490.  https://doi.org/10.1371/journal.pone.0132490 CrossRefGoogle Scholar
  45. Krupa SV, Moncrief JF (2002) An integrative analysis of the role of atmospheric deposition and land management practices on nitrogen in the US agricultural sector. Environ Pollut 118(2):273–283.  https://doi.org/10.1016/S0269-7491(01)00319-0 CrossRefGoogle Scholar
  46. Kunimatsu T, Nakazawa K, Hartmann J (2008) Method of evaluating nutrient loads through the atmosphere onto lakes. Desalination 226(1-3):190–199.  https://doi.org/10.1016/j.desal.2007.02.107 CrossRefGoogle Scholar
  47. Lamsal LN, Martin RV, Parrish DD, Krotkov NA (2013) Scaling relationship for NO2 pollution and urban population size: a satellite perspective. Environ Sci Technol 47(14):7855–7861.  https://doi.org/10.1021/es400744g CrossRefGoogle Scholar
  48. Langenberg V, Nyamushahu S, Rooijackers R, Koelmans AA (2003) External nutrient sources for Lake Tanganyika. J Great Lakes Res 29:169–180.  https://doi.org/10.1016/S0380-1330(03)70546-2 CrossRefGoogle Scholar
  49. Lawrence GB, Goolsby DA, Battaglin WA, Stensland GJ (2000) Atmospheric nitrogen in the Mississippi River basin emissions, deposition, and transport. Sci Total Environ 248(2-3):87–100.  https://doi.org/10.1016/S0048-9697(99)00533-1 CrossRefGoogle Scholar
  50. Lee JH, Bang KW, Ketchum LH, Choe JS, Yu MJ (2002) First flush analysis of urban storm runoff. Sci Total Environ 293(1-3):163–175.  https://doi.org/10.1016/S0048-9697(02)00006-2 CrossRefGoogle Scholar
  51. Li X, Xu Y, Zhao G, Shi C, Wang Z-L, Wang Y (2015) Assessing threshold values for eutrophication management using Bayesian method in Yuqiao reservoir, North China. Environ Monit Assess 187(4):195.  https://doi.org/10.1007/s10661-015-4399-4 CrossRefGoogle Scholar
  52. Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature 494(7438):459–462.  https://doi.org/10.1038/nature11917 CrossRefGoogle Scholar
  53. Luo YZ, Yang XS, Carley RJ, Perkins C (2003) Effects of geographical location and land use on atmospheric deposition of nitrogen in the state of Connecticut. Environ Pollut 124(3):437–448.  https://doi.org/10.1016/S0269-7491(03)00043-5 CrossRefGoogle Scholar
  54. Mercier F, Cazenave A, Maheu C (2002) Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: connections with ocean–atmosphere interactions over the Indian Ocean. Glob Planet Chang 32(2-3):141–163.  https://doi.org/10.1016/S0921-8181(01)00139-4 CrossRefGoogle Scholar
  55. Naithania J, Darchambeau F, Deleersnijder E, Descy JP, Wolanski E (2007) Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model. Ecol Model 200(1-2):225–233.  https://doi.org/10.1016/j.ecolmodel.2006.07.035 CrossRefGoogle Scholar
  56. National Bureau of Statistics (2013) 2012 population and housing census: population distribution by administrative areas. NBS-Dar es Salaam and OCGS-Zanzibar, Dar es SalaamGoogle Scholar
  57. Nkotagu HH (2008) Lake Tanganyika ecosystem management strategies. Aquat Ecosyst Health Manag 11(1):36–41.  https://doi.org/10.1080/14634980801891373 CrossRefGoogle Scholar
  58. Rojas ALP, Venegas LE (2009) Atmospheric deposition of nitrogen emitted in the metropolitan area of Buenos Aires to coastal waters of de La Plata River. Atmos Environ 43(6):1339–1348.  https://doi.org/10.1016/j.atmosenv.2008.11.038 CrossRefGoogle Scholar
  59. Russell KM, Galloway JN, Macko SA, Moody JL, Scudlark JR (1998) Sources of nitrogen in wet deposition to the Chesapeake Bay region. Atmos Environ 32(14-15):2453–2465.  https://doi.org/10.1016/S1352-2310(98)00044-2 CrossRefGoogle Scholar
  60. Sarvala J, Salonen K, Järvinen M, Aro E, Huttula T, Kotilainen P, Kurki H, Langenberg VT, Mannini P, Peltonen A, Plisnier PD, Vuorinen I, Mölsä H, Lindqvist O (1999) Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407:149–173.  https://doi.org/10.1023/A:1003753918055 CrossRefGoogle Scholar
  61. Su CG, Yin B, Zhu ZL, Shen QR (2003) Ammonia volatilization loss of nitrogen fertilizer from rice growing season. Chin J Appl Ecol 14(11):1884–1888Google Scholar
  62. Sutton MA, Bleeker A (2013) Environmental science the shape of nitrogen to come. Nature 494(7438):435–437.  https://doi.org/10.1038/nature11954 CrossRefGoogle Scholar
  63. Vitousek PM, Aber J, Howarth RW, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. https://doi.org/10.1890/1051-0761(1997)007[0737,HAOTGN]2.0.CO;2Google Scholar
  64. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507CrossRefGoogle Scholar
  65. Verburg P, Hecky RE (2003) Wind patterns, evaporation and related physical variables in Lake Tanganyika, East Africa. J Great Lakes Res 29:48–61.  https://doi.org/10.1016/S0380-1330(03)70538-3 CrossRefGoogle Scholar
  66. Verburg P, Hecky RE (2009) The physics of the warming of Lake Tanganyika by climate change. Limnol Oceanogr 54(6part2):2418–2430.  https://doi.org/10.4319/lo.2009.54.6_part_2.2418 CrossRefGoogle Scholar
  67. Vuai SAH, Ibembe JD, Mungai NW (2013) Influence of land use activities on spatial and temporal variation of nutrient deposition in Mwanza region: implication to the atmospheric loading to the Lake Victoria. Atmos Clim Sci 3(02):224–234.  https://doi.org/10.4236/acs.2013.32024 Google Scholar
  68. Wang XZ, Zhu JG, Gao R, Hosen Y (2004) Dynamics and ecological significance of nitrogen wet-deposition in Taihu Lake region: taking Changshu agro-ecological experimental station as an example. Chinese J Appl Ecol 15:1616–1620Google Scholar
  69. Wang XZ, Yin WQ, Shan YH, Feng K, Zhu JG (2009) Nitrogen and phosphorus input from wet deposition in Taihu Lake region: a case study in Changshu agro-ecological experimental station. Chin J Appl Ecol 20(10):2487–2492Google Scholar
  70. Whitall DR, Paerl HW (2001) Spatiotemporal variability of wet atmospheric nitrogen deposition to the Neuse River estuary, North Carolina. J Environ Qual 30(5):1508–1515.  https://doi.org/10.2134/jeq2001.3051508x CrossRefGoogle Scholar
  71. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54(6part2):2273–2282.  https://doi.org/10.4319/lo.2009.54.6_part_2.2273 CrossRefGoogle Scholar
  72. World Bank (2014) http://data.worldbank.org. Accessed on April 2015
  73. Xie YX, Xiong ZQ, Xing GX, Yan XY, Shi SL, Sun GQ, Zhu ZL (2008) Source of nitrogen in wet deposition to a rice agro-ecosystem at Tai lake region. Atmos Environ 42(21):5182–5192.  https://doi.org/10.1016/j.atmosenv.2008.03.008 CrossRefGoogle Scholar
  74. Xu W, Zhao YH, Liu XJ, Dore AJ, Zhang L, Liu L, Cheng MM (2018) Atmospheric nitrogen deposition in the Yangtze River basin: spatial pattern and source attribution. Environ Pollut 232:546–555.  https://doi.org/10.1016/j.envpol.2017.09.086 CrossRefGoogle Scholar
  75. Yang R, Hayashi K, Zhu B, Li FY, Yan XY (2010) Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of eastern China. Sci Total Environ 408(20):4624–4632.  https://doi.org/10.1016/j.scitotenv.2010.06.006 CrossRefGoogle Scholar
  76. Zhang Y, Liu XJ, Zhang FS, Ju XT, Zou GY, Hu KL (2006) Spatial and temporal variation of atmospheric nitrogen deposition in the North China plain. Acta Ecol Sin 26(6):1633–1638.  https://doi.org/10.1016/s1872-2032(06)60026-7 CrossRefGoogle Scholar
  77. Zhang Q, Streets DG, He K, Wang Y, Richter A, Burrows JP, Uno I, Jang CJ, Chen D, Yao Z, Lei Y (2007) NO(x) emission trends for China, 1995–2004: the view from the ground and the view from space. J Geophys Res 112:449–456.  https://doi.org/10.1029/2007JD008684 Google Scholar
  78. Zhang Q, Geng GN, Wang SW, Andreas R, He KB (2012) Satellite remote sensing of changes in NOx emissions over China: 1996-2010. Chin Sci Bull 57(22):2857–2864.  https://doi.org/10.1007/s11434-012-5015-4 CrossRefGoogle Scholar
  79. Zheng DN, Wang XS, Xie SD, Duan L, Chen DS (2014) Simulation of atmospheric nitrogen deposition in China in 2010. China Environ Sci 34:1089–1097Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qun Gao
    • 1
  • Shuang Chen
    • 1
  • Ismael Aaron Kimirei
    • 1
    • 2
  • Lu Zhang
    • 3
  • Huruma Mgana
    • 2
  • Prisca Mziray
    • 2
  • Zhaode Wang
    • 3
  • Cheng Yu
    • 1
  • Qiushi Shen
    • 3
  1. 1.Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography & LimnologyChinese Academy of Sciences (NIGLAS)NanjingChina
  2. 2.Kigoma CenterTanzania Fisheries Research Institute (TAFIRI)KigomaTanzania
  3. 3.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & LimnologyChinese Academy of Sciences (NIGLAS)NanjingChina

Personalised recommendations