Levels and distribution of cobalt and nickel in the aquatic macrophytes found in Skadar Lake, Montenegro

Abstract

Macrophytes react to changes in the quality of the environment in which they live (water/sediment), and they are good bioindicators of surface water conditions. In the present study, the content of the metals cobalt (Co) and nickel (Ni) was determined in the sediment, the water, and different organs of macrophytes from six localities around Lake Skadar, across four different seasons of year. The aquatic macrophytes that have been used as bioindicator species in this study are Phragmites australis (an emerged species), Ceratophyllum demersum (a submerged species), and Lemna minor (a floating species). The aim of this study was to determine the distribution of metals in macrophyte tissues and also to discover the degree of bioaccumulation of the investigated metals, depending both on the location and on the season. The content of Co and Ni in the examined parts of the macrophytes was in the range of 0.04–8.78 and 0.30–28.5 ppm, respectively. The greatest content of the investigated metal in the organs of P. australis and C. demersum was recorded at the beginning of and during the growing season. Greater concentrations of metals in the tissue of L. minor were observed at the end of the growing season.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Albers PH, Camardese MB (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands. Environ Toxicol Chem 12(6):959–967. https://doi.org/10.1002/etc.5620120602

    Article  CAS  Google Scholar 

  2. Al-Rekabi HY (2006) Distribution of cobalt and nickel in plankton and its aquatic surround habitats in Euphrates and Al-Garaf rivers at Al-Nassiria city, southern of Iraq. J Univ Thi Qar 2(2):8–15

    Google Scholar 

  3. Al-Taisan WA (2009) Suitability of using Phragmites australis and Tamarix aphylla as vegetation filters in industrial areas. Am J Environ Sci 5(6):740–747. https://doi.org/10.3844/ajessp.2009.740.747

    Article  CAS  Google Scholar 

  4. Al-Yemni MN, Sher H, El-Sheikh MA, Eid EM (2011) Bioaccumulation of nutrient and heavy metals by Calotropis procera and Citrullus colocynthis and their potential use as contamination indicators. Sci Res Essays 6:966–976

    CAS  Google Scholar 

  5. Assia A, Falaky E, Aboulroos SA, Saoud AA, Ali MA (2004) Aquatic plants for bioremediation of waste water. In: Proceedings of Eighth International Water Technology Conference, IWTC8. Alexandria, Egypt, pp 361–376

    Google Scholar 

  6. Ayeni OO, Ndakidemi PA, Snyman RG, Odendaal S (2010) Chemical, biological and physiological indicators of metal pollution in wetlands (review). Sci Res Essays 5(15):1938–1949

    Google Scholar 

  7. Babović N, Dražić G, Djordjević A, Mihailović N, (2010) Heavy and toxic metal accumulation in six macrophyte species from Fish Pond Ecka, Republic of Serbia, Balwoois, Ohrid, Republic of Macedonia - 25, 29 May 2010

  8. Baldantoni D, Alfani A, Tommasi PD, Bartoli G, De Santo AV (2004) Assessment of macro and microelement accumulation capability of two aquatic plants. Environ Pollut 130:149–156

    Article  CAS  Google Scholar 

  9. Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut R 16(1:42–53

    Article  CAS  Google Scholar 

  10. Bonanno G (2011) Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf 74(4):1057–1064. https://doi.org/10.1016/j.ecoenv.2011.01.018

    Article  CAS  Google Scholar 

  11. Borišev M, Pajević S, Stanković Ž, Krstić B. (2006) Macrophytes as phytoindicators and potential phytoremediators in aquatic ecosystems. Internat. Assoc. Danube Res. (IAD), 36th International Conference, Klosterneuburg & Vienna, The Book of Abstracts, p. 21

  12. Bragato C, Schiavon M, Polese R, Ertani A, Pittarello M, Malagoli M (2009) Seasonal variations of Cu, Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin.ex Steud. In a constructed wetland of North Italy. Desalination 247:36–45

    Google Scholar 

  13. Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326:181–195

    Article  CAS  Google Scholar 

  14. Chorom M, Parnian A, Jaafarzadeh N (2012) Nickel removal by the aquatic plant (Ceratophyllum Demersum L.) IJESD 3(4):372–375

    Article  CAS  Google Scholar 

  15. Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132(1):29–40. https://doi.org/10.1016/j.envpol.2004.03.030

    Article  CAS  Google Scholar 

  16. Filipović SP (1981) Effects of pollution on Lake Skadar and its most important tributaries. In: Beeton AM, Karaman GS. (Ed) The biota and limnology of Lake Skadar, University Veljko Vlahović, Institute of Biological and Medicine Research Titograd, Montenegro, Yugoslavia, pp. 97–108

  17. Hawker D, Connell D (1991) An evaluation between bioconcentration factor and aqueous solubility. Chemosphere 23(2):231–241. https://doi.org/10.1016/0045-6535(91)90109-Q

    Article  CAS  Google Scholar 

  18. Iram S, Ahmad I, Riaz Y, Zahara A (2012) Treatment of wastewater by Lemna minor. Pak J Sci 44:553–557

    CAS  Google Scholar 

  19. Jastrzębska M, Cwynar P, Polechoński R, Skwara T (2010) The content of heavy metals (Cu, Ni, Cd, Pb, Zn) in common reed (Phragmites australis) and floating pondweed (Potamogeton natans). Pol J Environ Stud 19(1):243–246

    Google Scholar 

  20. Kastratović V, Jaćimović Ž, Bigović M, Đurović D, Krivokapić S (2016) Environmental status and geochemical assessment sediments of Lake Skadar, Montenegro. Environ Monit Assess 188:449

    Article  CAS  Google Scholar 

  21. Keller B, Lajtha K, Cristofor S (1998) Trace metal concentrations in the sediments and plants of the Danube delta, Romania. Wetlands 18:42–50

    Article  Google Scholar 

  22. Keukelaar F, De Goffau A, Pradhan T, Sutmuller G, Mišurović A, Ivanović S ,Uskokovic B, Hetoja A, Haxhimihali E, Prifti A, Kapidani E, Kashta L & Gulan A. Royal Haskoning (2006). Lake Shkoder transboundary diagnostics analysis Albania & Montenegro. Project number 9P6515, Podgorica, 111 p

  23. Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/ soil / metal interaction and assessment of pertinent agronomic issues. JHRS 2(5):1–25

    Google Scholar 

  24. Lodenius M (1991) Mercury concentrations in an aquatic ecosystem during twenty years following abatement the pollution source. Water Air Soil Pollut 56:323–332

    Article  CAS  Google Scholar 

  25. Pajević S, Vučković M, Kevrešan Ž, Matavulj M, Radulović S, Radnović D (2003) Aquatic Macrophytes as indicators of heavy metal pollution of water in DTD Canal System. Zbornik Matice srpske za prirodne nauke / Proceedings for Natural Sciences, Matica Srpska, Novi Sad 104:51–60

    Article  Google Scholar 

  26. Passos EA, Alves JPH, Garcia CAB, Costa ACS (2011) Metal fractionation in sediments of the Sergipe River, Northeast, Brazil. J Braz Chem Soc 22(5):828–835

    CAS  Google Scholar 

  27. Podlesakova E, Nemecek J, Vacha R (2001) Mobility and bioavailability of trace elements in soils. Trace elements in soil. Bioavailability, Flux, and Transfer. Edited by I. K. Iskandar and M.B. Kirkham. USA

  28. Pueyo M, Sastre J, Hernandez E, Vidal M, Lopez-Sanchez JF, Rauret G (2003) Prediction of trace element mobility in contaminated soils by sequential extraction. J Environ Qual 32(6):2054–2066. https://doi.org/10.2134/jeq2003.2054

    Article  CAS  Google Scholar 

  29. Sajwan KS, Ornes WH, Youngblood TV, Alva AK (1996) Uptake of soil applied cadmium, nickel and selenium by bush beans. Water Air Soil Poll 91(3–4):209–217. https://doi.org/10.1007/BF00666258

    Article  CAS  Google Scholar 

  30. Samecka-Cymerman A, Kempers AJ (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotox Environ Safe 35(3):242–247. https://doi.org/10.1006/eesa.1996.0106

    Article  CAS  Google Scholar 

  31. Sasaki K, Ogino T, Hori O, Endo Y, Kurosawa K, Tsunekawa M (2003) Chemical transportation of heavy metals in the constructed wetland impacted by acid drainage. Mater Trans 44(2):305–312. https://doi.org/10.2320/matertrans.44.305

    Article  CAS  Google Scholar 

  32. Shankers AK, Cervantes C, Losa-Tavera H, Avdainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753. https://doi.org/10.1016/j.envint.2005.02.003

    Article  CAS  Google Scholar 

  33. Sundić D, Radujković B (2012) Skadar Lake water pollution, “Integrated Ecosystem Management of Lake Skadar -EMA-Plan”. NGO Green Home edition, Podgorica

    Google Scholar 

  34. Thiesen MO, Blincoe C (1988) Isolation and partial characterization of nickel complexes in higher plants. Biol Trace Elem Res 16(3):239–251. https://doi.org/10.1007/BF02797139

    Article  Google Scholar 

  35. Tiffin LO (1971) Translocation of nickel xylem exudate of plants. Plant Physiol 48(3):273–277. https://doi.org/10.1104/pp.48.3.273

    Article  CAS  Google Scholar 

  36. Tokalioğlu S, Kartal S, Elcxi L (2000) Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal Chim Acta 413(12):33–40

    Article  Google Scholar 

  37. Umoren IU, Udoh AP, Udousoro II (2007) Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb and Cd from refuse dump soils using the optimized BCR sequential extraction procedure. Environmentalist 27(2):241–252. https://doi.org/10.1007/s10669-007-9001-3

    Article  Google Scholar 

  38. USEPA Method 3051a (2007) Microwave assisted acid digestion of sediments, sludges, soils and oils, Revision 1

  39. Vemic M, Rousseau D, Laing GD, Lens PNL (2014) Distribution and fate of metals in the Montenegrin part of Lake Skadar. Int J Sediment Res 29:357–367

    Article  Google Scholar 

  40. Vujačić A (2010) Master thesis, University of Novi Sad, Faculty of Science, Novi Sad, 126 p. [in Serbian]

  41. Xuelu G, Chen-Tung AC, Gang W, Qinzhao X, Cheng T, Shaoyong C (2010) Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique. Estaur Coast Shelf Sci 86:369–378

    Article  CAS  Google Scholar 

  42. Yuan C, Shi J, He B, Liu J, Liang L, Jiang G (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30(6):769–783. https://doi.org/10.1016/j.envint.2004.01.001

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vlatko Kastratović.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kastratović, V., Bigović, M., Jaćimović, Ž. et al. Levels and distribution of cobalt and nickel in the aquatic macrophytes found in Skadar Lake, Montenegro. Environ Sci Pollut Res 25, 26823–26830 (2018). https://doi.org/10.1007/s11356-018-1388-5

Download citation

Keywords

  • Lake Skadar
  • Macrophytes
  • Cobalt
  • Nickel
  • Bioindicator
  • Sediment