Environmental Science and Pollution Research

, Volume 25, Issue 12, pp 11431–11439 | Cite as

Probing the toxic mechanism of bisphenol A with acid phosphatase at the molecular level

  • Mengchen Xu
  • Rui Zhang
  • Wei Song
  • Wansong Zong
  • Rutao Liu
Research Article
  • 102 Downloads

Abstract

As an endocrine-disrupting chemical, bisphenol A (BPA), can affect normal endocrine function of hormone. This paper studied the toxic effect of BPA on acid phosphatase at the molecular level by multi-spectroscopic measurements, molecular docking, and enzyme activity experiment. BPA could enhance the fluorescence intensity, change the structure, and cause an increased hydrophobicity of acid phosphatase. Hydrogen bond interaction and van der Waals forces were the main forces to generate the BPA-acid phosphatase complex on account of the negative ΔH (− 36.92 kJ mol−1) and ΔS (− 50.78 J mol−1 K−1). BPA led to the loosening and unfolding of protein structure and extending the peptide strands, as revealed by UV-vis absorption and CD spectra. Based on the enzyme activity experiment, BPA could decrease the activity of the acid phosphatase by entering the active site of the enzyme. The molecular docking model showed that BPA could bind into the cavity of acid phosphatase and interact with Tyr A252 and a hydrogen bond (1.47 Å) was formed in the binding process. This work suggested the structures and functions of acid phosphatase were both affected by BPA.

Keywords

Bisphenol A Acid phosphatase Interaction mechanisms Multi-spectroscopic measurements Molecular docking Enzyme activity assay 

Notes

Acknowledgements

This work is co-supported by NSFC (21277081, 21477067, and 21507071), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Research Fund for the Doctoral Program of Higher Education and Ministry of Education of China (20130131110016), and Science and Technology Development Plan of Shandong Province (2014GSF117027). The Fundamental Research Funds of Shandong University (2014BT013, 2015JC010 and 2015JC030) are also acknowledged.

Supplementary material

11356_2018_1378_MOESM1_ESM.doc (620 kb)
ESM 1 (DOC 620 kb)

References

  1. Baker V (2001) Endocrine disrupters—testing strategies to assess human hazard. Toxicol in Vitro 15(4-5):413–419.  https://doi.org/10.1016/S0887-2333(01)00045-5 CrossRefGoogle Scholar
  2. Barbieri B, Terpetschnig E, Jameson DM (2005) Frequency-domain fluorescence spectroscopy using 280-nm and 300-nm light-emitting diodes: measurement of proteins and protein-related fluorophores. Anal Biochem 344(2):298-300.  https://doi.org/10.1016/j.ab.2005.04.044 CrossRefGoogle Scholar
  3. Bhattacharyya J, Bhattacharyya M, Chakrabarty A, Chaudhur U, Poddar R (1994) Interaction of chlorpromazine with myoglobin and hemoglobin: a comparative study. Biochem Pharmacol 47(11):2049-2053.  https://doi.org/10.1016/0006-2952(94)90080-9 CrossRefGoogle Scholar
  4. Chaturvedi SK, Ahmad E, Khan JM, Alam P, Ishtikhar M, Khan RH (2015) Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol BioSyst 11(1):307–316.  https://doi.org/10.1039/C4MB00548A CrossRefGoogle Scholar
  5. Chen W-Y, Shen Y-P, Chen S-C (2016) Assessing bisphenol A (BPA) exposure risk from long-term dietary intakes in Taiwan. Sci Total Environ 543(Pt A):140–146.  https://doi.org/10.1016/j.scitotenv.2015.11.029 CrossRefGoogle Scholar
  6. Chi Z, Liu R (2012) New insights into the characterization of the binding of tetracycline analogues with lysozyme: a biophysical study. Chemosphere 86(1):92–97.  https://doi.org/10.1016/j.chemosphere.2011.09.023 CrossRefGoogle Scholar
  7. Chi Z, Liu R, Teng Y, Fang X, Gao C (2010) Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J Agric Food Chem 58:10262-10269.  https://doi.org/10.1021/jf101417w CrossRefGoogle Scholar
  8. Congdon RW, Muth GW, Splittgerber AG (1993) The binding interaction of Coomassie blue with proteins. Anal Biochem 213(2):407–413.  https://doi.org/10.1006/abio.1993.1439 CrossRefGoogle Scholar
  9. Del Pozo JC, Allona I, Rubio V, Leyva A, De La Peña A, Aragoncillo C, Paz-Ares J (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J 19(5):579-589.  https://doi.org/10.1046/j.1365-313X.1999.00562.x CrossRefGoogle Scholar
  10. Delfosse V, Balaguer P (2012) Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc Natl Acad Sci 109(37):14930–14935.  https://doi.org/10.1073/pnas.1203574109 CrossRefGoogle Scholar
  11. Ding F, Zhao G, Huang J, Sun Y, Zhang L (2009) Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur J Med Chem 44(10):4083-4089.  https://doi.org/10.1016/j.ejmech.2009.04.047 CrossRefGoogle Scholar
  12. Ding F, Han B-Y, Liu W, Zhang L, Sun Y (2010) Interaction of imidacloprid with hemoglobin by fluorescence and circular dichroism. J Fluoresc 20(3):753–762.  https://doi.org/10.1007/s10895-010-0618-0 CrossRefGoogle Scholar
  13. Duff SM, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90(4):791-800.  https://doi.org/10.1111/j.1399-3054.1994.tb02539.x CrossRefGoogle Scholar
  14. Fujio K, Watanabe M, Ueki H, Li S-A, Kinoshita R, Ochiai K, Futami J, Watanabe T, Nasu Y, Kumon H (2015) A vaccine strategy with multiple prostatic acid phosphatase-fused cytokines for prostate cancer treatment. Oncol Rep 33(4):1585–1592.  https://doi.org/10.3892/or.2015.3770 CrossRefGoogle Scholar
  15. Guan J, Liu G, Cai K, Gao C, Liu R (2015) Probing the interactions between carboxylated multi-walled carbon nanotubes and copper–zinc superoxide dismutase at a molecular level. Luminescence 30(5):693-698.  https://doi.org/10.1002/bio.2807 CrossRefGoogle Scholar
  16. Hu Y-J, Liu Y, Zhao R-M, Dong J-X, Qu S-S (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photochem Photobiol A Chem 179(3):324–329.  https://doi.org/10.1016/j.jphotochem.2005.08.037 CrossRefGoogle Scholar
  17. Keri RA, Ho S-M, Hunt PA, Knudsen KE, Soto AM, Prins GS (2007) An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol 24(2):240–252.  https://doi.org/10.1016/j.reprotox.2007.06.008 CrossRefGoogle Scholar
  18. Klabunde T, Stahl B, Suerbaum H, Hahner S, Karas M, Hillenkamp F, Krebs B, Witzel H (1994) The amino acid sequence of the red kidney bean Fe (III)-Zn (II) purple acid phosphatase. Eur J Biochem 226(2):369–375.  https://doi.org/10.1111/j.1432-1033.1994.tb20061.x CrossRefGoogle Scholar
  19. Lavery R, Sacquin-Mora S (2007) Protein mechanics: a route from structure to function. J Biosci 32(S1):891–898.  https://doi.org/10.1007/s12038-007-0089-x CrossRefGoogle Scholar
  20. Lei B, Jie X, Wei P, Yu W, Zeng X, Yu Z, Wang Y, Tian C (2016) In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF-7 cells and two-hybrid yeast bioassay. Environ Toxicol 32(1):278-289.  https://doi.org/10.1002/tox.22234
  21. Li D, Fan H, Ye WJ, Hou HF (2010) Developmental toxicity of bisphenol-A on post-implantation rat embryos cultured in vitro. J Health Sci 56(1):57–64.  https://doi.org/10.1248/jhs.56.57 CrossRefGoogle Scholar
  22. Lu D, Zhao X, Zhao Y, Zhang B, Zhang B, Geng M, Liu R (2011) Binding of Sudan II and Sudan IV to bovine serum albumin: comparison studies. Food Chem Toxicol 49(12):3158–3164.  https://doi.org/10.1016/j.fct.2011.09.011 CrossRefGoogle Scholar
  23. Mariam J, Dongre P, Kothari D (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21(6):2193-2199.  https://doi.org/10.1007/s10895-011-0922-3 CrossRefGoogle Scholar
  24. Mu Y, Lin J, Liu R (2011) Interaction of sodium benzoate with trypsin by spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 83(1):130–135.  https://doi.org/10.1016/j.saa.2011.07.092 CrossRefGoogle Scholar
  25. Muhamad MS, Salim MR, Lau WJ, Yusop Z (2016) A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environ Sci Pollut Res 23(12):11549–11567.  https://doi.org/10.1007/s11356-016-6357-2 CrossRefGoogle Scholar
  26. Nevin A, Cather S, Burnstock A, Anglos D (2008) Analysis of protein-based media commonly found in paintings using synchronous fluorescence spectroscopy combined with multivariate statistical analysis. Appl Spectrosc 62(5):481–489.  https://doi.org/10.1366/000370208784344523 CrossRefGoogle Scholar
  27. Pan F, Xu T, Yang L, Jiang X, Zhang L (2014) Probing the binding of an endocrine disrupting compound-bisphenol F to human serum albumin: insights into the interactions of harmful chemicals with functional biomacromolecules. Spectrochim Acta A Mol Biomol Spectrosc 132:795–802.  https://doi.org/10.1016/j.saa.2014.05.093 CrossRefGoogle Scholar
  28. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53(1):158–163.  https://doi.org/10.1021/jf048693g CrossRefGoogle Scholar
  29. Pei XR, Li Y, Long DX, Chen X, Gao LF, Chen XG (2003): In vitro study of bisphenol-A toxicity on the early embryo development of mice. Chinese Journal of Reproductive HealthGoogle Scholar
  30. Pushparani D (2015) High acid phosphatase level in the gingival tissues of periodontitis subjects. J Basic Clin Pharm 6(2):59–63.  https://doi.org/10.4103/0976-0105.152092 CrossRefGoogle Scholar
  31. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11):3096–3102.  https://doi.org/10.1021/bi00514a017 CrossRefGoogle Scholar
  32. Schenk G, Guddat L, Ge Y, Carrington L, Hume D, Hamilton S, De Jersey J (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 250(2):117-125.  https://doi.org/10.1016/S0378-1119(00)00186-4 CrossRefGoogle Scholar
  33. Song W, Yu Z, Hu X, Liu R (2015) Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling. Spectrochim Acta A Mol Biomol Spectrosc 137:286–293.  https://doi.org/10.1016/j.saa.2014.08.037 CrossRefGoogle Scholar
  34. Takahashi O, Oishi S (2003) Testicular toxicity of dietarily or parenterally administered bisphenol A in rats and mice. Food Chem Toxicol 41(7):1035–1044.  https://doi.org/10.1016/S0278-6915(03)00031-0 CrossRefGoogle Scholar
  35. Teng Y, Liu R, Li C, Xia Q, Zhang P (2011) The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations. J Hazard Mater 190(1-3):574–581.  https://doi.org/10.1016/j.jhazmat.2011.03.084 CrossRefGoogle Scholar
  36. Tong C, Xiang G, Bai Y (2010) Interaction of paraquat with calf thymus DNA: a terbium (III) luminescent probe and multispectral study. J Agric Food Chem 58(9):5257-5262.  https://doi.org/10.1021/jf1000748 CrossRefGoogle Scholar
  37. Van de Weert M, Stella L (2011) Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. J Mol Struct 998(1-3):144–150.  https://doi.org/10.1016/j.molstruc.2011.05.023 CrossRefGoogle Scholar
  38. Vincent JB, Averill BA (1990) An enzyme with a double identity: purple acid phosphatase and tartrate-resistant acid phosphatase. FASEB J 4(12):3009–3014.  https://doi.org/10.1096/fasebj.4.12.2394317 CrossRefGoogle Scholar
  39. Wang Y-Q, Chen T-T, Zhang H-M (2010) Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc 75(3):1130–1137.  https://doi.org/10.1016/j.saa.2009.12.071 CrossRefGoogle Scholar
  40. Wang H, Zou Y, Li C, Wang W, Zhang M, Dahlgren RA, Wang X (2013) Fluorescence characteristics of bisphenol a in room temperature ionic liquids. J Fluoresc 23(6):1157–1165.  https://doi.org/10.1007/s10895-013-1246-2 CrossRefGoogle Scholar
  41. Wang J, Yang X, Wang J, Xu C, Zhang W, Liu R, Zong W (2016) Probing the binding interaction between cadmium(ii) chloride and lysozyme. New J Chem 40(4):3738–3746.  https://doi.org/10.1039/C5NJ02911B CrossRefGoogle Scholar
  42. Wasaki J, Ando M, Ozawa K, Omura M, Osaki M, Ito H, Matsui H, Tadano T (1997) Properties of secretory acid phosphatase from lupin roots under phosphorus-deficient conditions. Soil Sci Plant Nutr 43(sup1):981–986.  https://doi.org/10.1080/00380768.1997.11863703 CrossRefGoogle Scholar
  43. Wu Q, Zhang H, Sun T, Zhang B, Liu R (2015) Probing the toxic mechanism of Ag+ with lysozyme. Spectrochim Acta A Mol Biomol Spectrosc 151:124–130.  https://doi.org/10.1016/j.saa.2015.06.080 CrossRefGoogle Scholar
  44. Yang Q, Liang J, Han H (2009) Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. J Phys Chem B 113(30):10454-10458.  https://doi.org/10.1021/jp904004w CrossRefGoogle Scholar
  45. Yin H, Ai S, Shi W, Zhu L (2009) A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles–silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors Actuators B Chem 137(2):747–753.  https://doi.org/10.1016/j.snb.2008.12.046 CrossRefGoogle Scholar
  46. Yin N, Yao X, Qin Z, Wang YL, Faiola F (2015) Assessment of bisphenol A(BPA) neurotoxicity in vitro with mouse embryonic stem cells. J Environ Sci 36(10), 181–187.  https://doi.org/10.1016/j.jes.2015.06.004
  47. Zeng H-J, Qi T, Yang R, You J, Qu L-B (2014) Spectroscopy and molecular docking study on the interaction behavior between nobiletin and pepsin. J Fluoresc 24(4):1031–1040.  https://doi.org/10.1007/s10895-014-1379-y CrossRefGoogle Scholar
  48. Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, Zheng K, Wu Z (2013) Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: effect of contact time, temperature, pH and ionic strength. Appl Clay Sci 83:137-143.  https://doi.org/10.1016/j.clay.2013.08.033 CrossRefGoogle Scholar
  49. Zhang T, Zhang H, Liu G, Gao C, Liu R (2014) Interaction of Cu2+, Pb2+, Zn2+ with trypsin: what is the key factor of their toxicity? J Fluoresc 24(6):1803–1810.  https://doi.org/10.1007/s10895-014-1469-x CrossRefGoogle Scholar
  50. Zhang B, Zhai W, Liu R, Yu Z, Shen H, Hu X (2015) Evaluation on the toxic effects of nanoAg to catalase. J Nanosci Nanotechnol 15(2):1473–1479.  https://doi.org/10.1166/jnn.2015.9042 CrossRefGoogle Scholar
  51. Zhao X, Liu R, Chi Z, Teng Y, Qin P (2010) New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B 114:5625-5631.  https://doi.org/10.1021/jp100903x CrossRefGoogle Scholar
  52. Zheng L, Ma Y, Zhang G, Yao J, Keita B, Nadjo L (2010) A multitechnique study of europium decatungstate and human serum albumin molecular interaction. Phys Chem Chem Phys 12(6):1299–1304.  https://doi.org/10.1039/B919952G CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengchen Xu
    • 1
  • Rui Zhang
    • 1
  • Wei Song
    • 1
  • Wansong Zong
    • 2
  • Rutao Liu
    • 1
  1. 1.School of Environmental Science and Engineering, China -America CRC for Environment & Health, Shandong ProvinceShandong UniversityJinanPeople’s Republic of China
  2. 2.College of Population, Resources and EnvironmentShandong Normal UniversityJinanPeople’s Republic of China

Personalised recommendations