Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10619–10629 | Cite as

Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters

  • Maria Concetta Bruzzoniti
  • Marta Appendini
  • Barbara Onida
  • Michele Castiglioni
  • Massimo Del Bubba
  • Lia Vanzetti
  • Prasanta Jana
  • Gian Domenico Sorarù
  • Luca Rivoira
Research Article

Abstract

The presence of residual color in treated textile wastewater above the regulation limits is still a critical issue in many textile districts. Innovative, polymer-derived ceramics of the Si–C–O system were here synthesized in order to obtain porous nanocomposite materials where a free carbon phase is dispersed into a silicon carbide/silicon oxycarbide network. The sorbents were comprehensively characterized for the removal of two model water-soluble dyes (i.e., the cation methylene blue and the zwitterion rhodamine B). Adsorption is very rapid and controlled by intra-particle and/or film diffusion, depending on dye concentration. Among the nanocomposites studied, the SiOC aerogel (total capacity about 45 mg/g, is easily regenerated under mild treatment (250 °C, 2 h). Adsorption of dyes is not affected by the matrix composition: removals of 150 mg/L methylene blue from river water and simulated textile wastewater with high content of metal ions (2–50 mg/L) and chemical oxygen demand (800 mg/L) were higher than 92% and quantitative for a dye concentration of 1 mg/L.

Keywords

Dyes Textile wastewater Adsorption Polymer-derived ceramics Regeneration 

Notes

Acknowledgements

MCB would like to express her gratitude to Dr. Francesca Orzi for her technical support.

Funding information

The authors greatly acknowledge the financial support of “Fondazione Cassa di Risparmio di Trento e Rovereto” under the contract: polymer-derived ceramics with hierarchical porosity for water filtration/purification (grant number 2015.0174). Financial support from Ministero dell’Istruzione e della Ricerca (MIUR, Italy) is also acknowledged.

Supplementary material

11356_2018_1367_MESM1_ESM.docx (180 kb)
ESM 1 (DOCX 179 kb)

References

  1. Al-Degs Y, Khraisheh M, Allen S, Ahmad M (2001) Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons. Sep Sci Technol 36(1):91–102.  https://doi.org/10.1081/SS-100000853 CrossRefGoogle Scholar
  2. Baldev E, MubarakAli D, Ilavarasi A, Pandiaraj D, Ishack KSS, Thajuddin N (2013) Degradation of synthetic dye, rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf B: Biointerfaces 105:207–214.  https://doi.org/10.1016/j.colsurfb.2013.01.008 CrossRefGoogle Scholar
  3. Banerjee S, Dastidar MG (2005) Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics. Bioresour Technol 96(17):1919–1928.  https://doi.org/10.1016/j.biortech.2005.01.039 CrossRefGoogle Scholar
  4. Bhattacharyya KG, Sharma A (2005) Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigments 65(1):51–59.  https://doi.org/10.1016/j.dyepig.2004.06.016 CrossRefGoogle Scholar
  5. Bruzzoniti MC, De Carlo R, Rivoira L, Del Bubba M, Pavani M, Riatti M, Onida B (2016) Adsorption of bentazone herbicide onto mesoporous silica: application to environmental water purification. Environ Sci Pollut R 23(6):5399–5409.  https://doi.org/10.1007/s11356-015-5755-1 CrossRefGoogle Scholar
  6. Bruzzoniti MC, Appendini M, Rivoira L, Onida B, Del Bubba M, Jana P, Sorarù GD (2018) Polymer-derived ceramic aerogels as sorbent materials for the removal of organic dyes from aqueous solutions. J Am Ceram Soc 101(2):821–830.  https://doi.org/10.1111/jace.15241 CrossRefGoogle Scholar
  7. Bruzzoniti MC, De Carlo RM, Fiorilli S, Onida B, Sarzanini C (2009) Functionalized SBA-15 mesoporous silica in ion chromatography of alkali, alkaline earths, ammonium and transition metal ions. J Chromatogr A 1216(29):5540–5547.  https://doi.org/10.1016/j.chroma.2009.05.052 CrossRefGoogle Scholar
  8. Bruzzoniti MC, De Carlo RM, Sarzanini C, Caldarola D, Onida B (2012) Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water. Environ Sci Pollut R 19(9):4176–4183.  https://doi.org/10.1007/s11356-012-0900-6 CrossRefGoogle Scholar
  9. Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194(1–3):259–267.  https://doi.org/10.1016/j.desal.2005.10.032 CrossRefGoogle Scholar
  10. Caldarola D, Mitev DP, Marlin L, Nesterenko EP, Paull B, Onida B, Bruzzoniti MC, De Carlo RM, Sarzanini C, Nesterenko PN (2014) Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino] acetic acid functional groups. Characterisation and application. Appl Surf Sci 288:373–380.  https://doi.org/10.1016/j.apsusc.2013.10.035 CrossRefGoogle Scholar
  11. ChemAxon Ltd. (2016) Chemicalize, www.chemicalize.org
  12. Colombo P (2010) Polymer derived ceramics: from Nano-structure to applications. DEStech Publications.  https://doi.org/10.1002/9780470880630
  13. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837Google Scholar
  14. Doğan M, Alkan M, Türkyilmaz A, Özdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109(1–3):141–148.  https://doi.org/10.1016/j.jhazmat.2004.03.003 CrossRefGoogle Scholar
  15. Dursun AY, Kalayci CS (2005) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J Hazard Mater 123(1–3):151–157.  https://doi.org/10.1016/j.jhazmat.2005.03.034 CrossRefGoogle Scholar
  16. El-Ashtoukhy E-S, Fouad Y (2015) Liquid–liquid extraction of methylene blue dye from aqueous solutions using sodium dodecylbenzenesulfonate as an extractant. Alexandria Eng J 54(1):77–81.  https://doi.org/10.1016/j.aej.2014.11.007 CrossRefGoogle Scholar
  17. Fierro V, Torné-Fernández V, Montané D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor Mesopor Mater 111(1–3):276–284.  https://doi.org/10.1016/j.micromeso.2007.08.002 CrossRefGoogle Scholar
  18. Fiorilli S, Rivoira L, Calì G, Appendini M, Bruzzoniti MC, Coïsson M, Onida B (2017) Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water. Appl Surf Sci 411:457–465CrossRefGoogle Scholar
  19. Gad HM, El-Sayed AA (2009) Activated carbon from agricultural by-products for the removal of rhodamine-B from aqueous solution. J Hazard Mater 168(2–3):1070–1081.  https://doi.org/10.1016/j.jhazmat.2009.02.155 CrossRefGoogle Scholar
  20. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 2014Google Scholar
  21. Goyal R, Sreekrishnan T, Khare M, Yadav S, Chaturvedi M (2010) Experimental study on color removal from textile industry wastewater using the rotating biological contactor. Pract Period Hazard Toxic Radioact Waste Manag 14:240–245CrossRefGoogle Scholar
  22. Gupta V (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342.  https://doi.org/10.1016/j.jenvman.2008.11.017 CrossRefGoogle Scholar
  23. Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Env Sci Technol 37:315–377CrossRefGoogle Scholar
  24. Jana P, Bruzzoniti MC, Appendini M, Rivoira L, Del Bubba M, Rossini D, Ciofi L, Sorarù GD (2016) Processing of polymer-derived silicon carbide foams and their adsorption capacity for non-steroidal anti-inflammatory drugs. Ceram Int 42(16):18937–18943.  https://doi.org/10.1016/j.ceramint.2016.09.045 CrossRefGoogle Scholar
  25. Jana P, Zera E, Sorarù GD (2017) Processing of preceramic polymer to low density silicon carbide foam. Mater Des 116:278–286CrossRefGoogle Scholar
  26. Kumar KV, Ramamurthi V, Sivanesan S (2005) Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci 284:14–21CrossRefGoogle Scholar
  27. Melis M (2014) Additivi e tossici negli alimenti. libreriauniversitaria. it EdizioniGoogle Scholar
  28. Meng L, Zhang X, Tang Y, Su K, Kong J (2015) Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes. Sci Rep 5(1).  https://doi.org/10.1038/srep07910
  29. Naeem S, Baheti V, Wiener J, Marek J (2017) Removal of methylene blue from aqueous media using activated carbon web. The J Text I 108(5):803–811.  https://doi.org/10.1080/00405000.2016.1191745 CrossRefGoogle Scholar
  30. Nguyen VL, Laidani NB, Sorarù GD (2015a) N-doped polymer-derived Si(N)OC: the role of the N-containing precursor. J Mater Res 30(06):770–781.  https://doi.org/10.1557/jmr.2015.44 CrossRefGoogle Scholar
  31. Nguyen VL, Zera E, Perolo A, Campostrini R, Li W, Sorarù GD (2015b) Synthesis and characterization of polymer-derived SiCN aerogel. J Eur Ceram Soc 35(12):3295–3302.  https://doi.org/10.1016/j.jeurceramsoc.2015.04.018 CrossRefGoogle Scholar
  32. Olu-Owolabi BI, Diagboya PN, Adebowale KO (2014) Evaluation of pyrene sorption-desorption on tropical soils. J Environ Manag 137:1–9.  https://doi.org/10.1016/j.jenvman.2014.01.048 CrossRefGoogle Scholar
  33. Ovchinnikov OV, Evtukhova AV, Kondratenko TS, Smirnov MS, Khokhlov VY, Erina OV (2016) Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib Spectrosc 86:181–189.  https://doi.org/10.1016/j.vibspec.2016.06.016 CrossRefGoogle Scholar
  34. Patil K, Pawar R, Talap P (2000) Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu 4 NBr and urea. Phys Chem Chem Phys 2:4313–4317CrossRefGoogle Scholar
  35. Pereira R, Pereira M, Alves M, Pereira L (2014) Carbon based materials as novel redox mediators for dye wastewater biodegradation. Appl Catal B 144:713–720.  https://doi.org/10.1016/j.apcatb.2013.07.009 CrossRefGoogle Scholar
  36. Randhawa N, Das N, Jana R (2014) Adsorptive remediation of Cu (II) and Cd (II) contaminated water using manganese nodule leaching residue. Desal Water Treat 52(22-24):4197–4211.  https://doi.org/10.1080/19443994.2013.801324 CrossRefGoogle Scholar
  37. Richardson M (2008) Chemical safety: international reference manual. John Wiley & SonsGoogle Scholar
  38. Rivoira L, Appendini M, Fiorilli S, Onida B, Del Bubba M, Bruzzoniti MC (2016) Functionalized iron oxide/SBA-15 sorbent: investigation of adsorption performance towards glyphosate herbicide. Environ Sci Pollut R 23(21):21682–21691.  https://doi.org/10.1007/s11356-016-7384-8 CrossRefGoogle Scholar
  39. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41(9):807–878.  https://doi.org/10.1080/10643380903218376 CrossRefGoogle Scholar
  40. Spagni A, Grilli S, Casu S, Mattioli D (2010) Treatment of a simulated textile wastewater containing the azo-dye reactive orange 16 in an anaerobic-biofilm anoxic–aerobic membrane bioreactor. Int Biodeter Biodegradation 64(7):676–681.  https://doi.org/10.1016/j.ibiod.2010.08.004 CrossRefGoogle Scholar
  41. Tafulo P, Queirós R, González-Aguilar G (2009) On the “concentration-driven” methylene blue dimerization. Spectrochim Acta Mol Biomol Spectrosc 73(2):295–300.  https://doi.org/10.1016/j.saa.2009.02.033 CrossRefGoogle Scholar
  42. Tian Y, Cui G, Liu Y, Li H, Sun Z, Yan S (2016) Self-assembly synthesis of hollow double silica@ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes. Appl Surf Sci 387:631–641.  https://doi.org/10.1016/j.apsusc.2016.06.158 CrossRefGoogle Scholar
  43. Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW (2006) Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour Technol 97(3):488–493.  https://doi.org/10.1016/j.biortech.2005.02.050 CrossRefGoogle Scholar
  44. Umoren S, Etim U, Israel A (2013) Adsorption of methylene blue from industrial effluent using poly (vinyl alcohol). J Mater Environ Sci 4:75–86Google Scholar
  45. Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal Colloid Interface Sci 286(1):90–100.  https://doi.org/10.1016/j.jcis.2005.01.007 CrossRefGoogle Scholar
  46. Vallachira Warriam Sasikumar P, Zera E, Graczyk-Zajac M, Riedel R, Sorarù GD, Dunn B (2016) Structural design of polymer-derived SiOC ceramic aerogels for high-rate li ion storage applications. J Am Ceram Soc 99(9):2977–2983.  https://doi.org/10.1111/jace.14323 CrossRefGoogle Scholar
  47. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168.  https://doi.org/10.1016/j.jenvman.2011.09.012 CrossRefGoogle Scholar
  48. Weber WJ, Morris JC (1964) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–59Google Scholar
  49. Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101(9):3040–3046.  https://doi.org/10.1016/j.biortech.2009.12.042 CrossRefGoogle Scholar
  50. Yener J, Kopac T, Dogu G, Dogu T (2008) Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon. Chem Eng J 144(3):400–406.  https://doi.org/10.1016/j.cej.2008.02.009 CrossRefGoogle Scholar
  51. Yu Z, Feng Y, Li S, Pei Y (2016) Influence of the polymer–polymer miscibility on the formation of mesoporous SiC(O) ceramics for highly efficient adsorption of organic dyes. J Eur Ceram Soc 36(15):3627–3635.  https://doi.org/10.1016/j.jeurceramsoc.2016.02.003 CrossRefGoogle Scholar
  52. Zera E, Campostrini R, Aravind PR, Blum Y, Sorarù GD (2014) Novel SiC/C aerogels through pyrolysis of polycarbosilane precursors. Adv Eng Mater 16:814–819CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Concetta Bruzzoniti
    • 1
  • Marta Appendini
    • 1
  • Barbara Onida
    • 2
  • Michele Castiglioni
    • 1
  • Massimo Del Bubba
    • 3
  • Lia Vanzetti
    • 4
  • Prasanta Jana
    • 5
  • Gian Domenico Sorarù
    • 5
  • Luca Rivoira
    • 1
  1. 1.Department of ChemistryUniversity of TurinTurinItaly
  2. 2.Department of Applied Science and TechnologyPolytechnic of TorinoTurinItaly
  3. 3.Department of Chemistry “Ugo Schiff”University of FlorenceSesto FiorentinoItaly
  4. 4.Fondazione Bruno Kessler-CMM-MNFTrentoItaly
  5. 5.Department of Industrial EngineeringUniversity of TrentoTrentoItaly

Personalised recommendations