Skip to main content
Log in

The environmental impact of informal and home productive arrangement in the jewelry and fashion jewelry chain on sanitary sewer system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The outsourcing informal home practices adopted in jewelry and fashion jewelry chain can cause toxic substance elimination in the effluents and raise a concern for its environmental impact. This study evaluates if this informal work alters the concentration of potentially toxic elements (PTEs: As, Cd, Cr total and Cr-VI, Cu, Hg, Ni, Pb, Sn, and Zn) in the sewage network. The sanitary sewage samples (n = 540) were collected in 15 manholes during two campaigns in three different areas of Limeira-SP, Brazil (industrial area, with informal work and without known industrial/informal activity). The sewage sludge (n = 12), raw (n = 12), and treated sewage (n = 12) were collected in two wastewater treatment plants (WWT: AS and TATU) operating with different treatment process. The PTE determination was performed by ICP-OES, direct mercury analysis, and UV–Vis spectroscopy. Cr-VI, Cu, Ni, and Zn were the only elements above the quantification limit. Four samples exceeded Cu or Zn values permitted to be discharged into sewage system; however, the concentration average was lower than that established by Brazilian legislation. A difference was found between values above and below the 75th percentile for campaign and total organic carbon values (p < 0.015). The AS-treated sewage presented low concentrations of Cu (p < 0.05), Zn (p = 0.02), and Ni (p = 0.01) compared to treated sewage from TATU. In the sludge samples, the Cu means exceeded the limits of the Brazilian legislation (1500 mg kg−1) and the Zn results were very close to the limits (2800 mg kg−1). The heterogeneity of the results can indicate the sporadic nature of the PTE’s sanitary disposal. PTEs used in jewelry and fashion jewelry chain may precipitate on the sludge, where presented high concentrations of Cu and Zn which require controlled destination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257. https://doi.org/10.1016/j.biortech.2005.12.006

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • ALJ—Limeirense Jewelry Association [internet]. Limeira—jewelry capital (2014) Available in: http://www.alj.org.br/site/noticia_detalhes.php?ID_Noticia=756. Accessed: 05 April 2015 (in Portuguese)

  • Araya M, Olivares M, Pizarro F, González M, Speisky H, Uauy R (2003) Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure. Am J Clin Nutr 77:646–650

    Article  CAS  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    Article  CAS  Google Scholar 

  • ATSDR. Agency for Toxic Substances and Disease Registry (2004) U.S. Department of Health and Human Services. Toxicological Profile for Copper, Atlanta

    Google Scholar 

  • ATSDR. Agency for Toxic Substances and Disease Registry (2005a) U.S. Department of Health and Human Services. Toxicological Profile for Zinc, Atlanta

    Google Scholar 

  • ATSDR. Agency for Toxic Substances and Disease Registry (2005b) U.S. Department of Health and Human Services. Toxicological Profile for Tin and Tin Compounds, Atlanta

    Google Scholar 

  • Azevedo FA, Chasin AAM (2003) Metais: Gerenciamento da toxicicdade (Metals: toxicity management). São Paulo, Atheneu (in Portuguese)

    Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133(1):25–46. https://doi.org/10.1039/B711896A

    Article  CAS  Google Scholar 

  • Baysal A, Ozbek N, Akman S (2013) Determination of trace metals in waste water and their removal processes. In: Einschlag FSG, Carlos L, editors. Waste water—treatment technologies and recent analytical developments. Croatia; [s.n.]:145–71.

  • Benvenuti T, Rodrigues MAS, Arenzon A, Bernardes AM, Zoppas-Ferreira J (2015) Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin. Braz J Biol 75(2):17–24. https://doi.org/10.1590/1519-6984.1113.

    Article  CAS  Google Scholar 

  • Braga AFM, Zaiat M, Silva GHR, Fermoso FG (2017) Metal fractionation in sludge from sewage UASB treatment. J Environ Manag 193:98–107. https://doi.org/10.1016/j.jenvman.2017.01.070

    Article  CAS  Google Scholar 

  • Cai Q-Y, Mo C-H, Qi-Tang W, Qiao-Yun Z, Katsoyiannis A (2007) Concentration and speciation of heavy metals in six different sewage sludge-composts. J Hazard Mater 147:1063–1072

    Article  CAS  Google Scholar 

  • CETESB. Brazilian Environmental Company [internet](2005) Fashion Jewelry: P + L Series. Secretaria do Meio Ambiente, Governo do Estado de São Paulo. Available in: http://www.crq4.org.br/downloads/bijuterias.pdf. Accessed: 05 April 2015 (in Portuguese).

  • CETESB. Brazilian Environmental Company (2011) National guide for samples collection and preservation: water, sediment, aquatic communities and liquid effluents. Agência Nacional de Águas, Ministério do meio Ambiente, Brasília (in Portuguese)

    Google Scholar 

  • CETESB - Brazilian Environmental Company (BR) (2016) State of São Paulo’s water quality report 2016. Governo do Estado de São Paulo: Secretária do Meio Ambiente. Available in: http://aguasinteriores.cetesb.sp.gov.br/publicacoes-e-relatorios/. Accessed: 08 July 2017 (in Portuguese).

  • CGA. General Accreditation Coordination (2011) Orientation on validation of analytical methods: guidance document. DOQ-CGCRE-008. Revision 4. 19p (in Portuguese).

  • Chen M, Li X-m, Yang Q, Guang-ming Z, Zhang Y, De-xiang L, Jing-jin L, Jing-mei H, Guo L (2008) Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China. J Hazard Mater 160(2-3):324–329. https://doi.org/10.1016/j.jhazmat.2008.03.036

    Article  CAS  Google Scholar 

  • Chou IC, Wang YF, Chang CP, Wang CT, Kuo YM (2011) Effect of NaOH on the vitrification process of waste Ni–Cr sludge. J Hazard Mater 185(2-3):1522–1527. https://doi.org/10.1016/j.jhazmat.2010.10.079

    Article  CAS  Google Scholar 

  • CONAMA. Environmental National Council (BR) (2005) Resolution n° 357, March 17, 2005. Water bodies classification and environmental guidelines for its classification, as well as establishes the conditions and standards for the discharge of effluents, and provides other measures. Ministério do Meio Ambiente. Diário Oficial da União, Brasília. n°053:58–63 (in Portuguese)

  • CONAMA – Environmental National Council (BR) (2006) Resolution CONAMA N° 375/2006. Defines criteria and procedures for the agricultural use of sewage sludge generated in sanitary sewage treatment plants and their by-products, and makes other provisions. Diário Oficial da União, Brasília;167:141–6 (in Portuguese)

  • Fang W, Delapp RC, Kosson DS, van der Sloot HA, Liu J (2017) Release of heavy metals during long-term land application of sewage sludge compost: percolation leaching tests with repeated additions of compost. Chemosphere 169:271–280. https://doi.org/10.1016/j.chemosphere.2016.11.086

    Article  CAS  Google Scholar 

  • Ferreira MAL (2005) Risk study of worker’s health and the environment in the production of jewelry and fashion jewelry in Limeira, SP. Universidade Metodista de Piracicaba, Piracicaba (in Portuguese)

    Google Scholar 

  • Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ (2017) The presence of contaminations in sewage sludge—the current situation. J Environ Manag 203(Pt 3):1–11. https://doi.org/10.1016/j.jenvman.2017.05.068

    Google Scholar 

  • Gonçalves ICR, ASF A, LAPL N, Melo WJ (2014) Soil microbial biomass after two years of the consecutive application of composted tannery sludge. Acta Scientiarum. Agronomy 36(1):35–41. https://doi.org/10.4025/actasciagron.v36i1.17160.

    Article  Google Scholar 

  • Gromaire MC, Garnaud S, Saad M, Chebbo G (2001) Contribution of different SOURCES to the pollution of wet weather flows in combined sewers. Wat Res 35(2):521–533. https://doi.org/10.1016/S0043-1354(00)00261-X

    Article  CAS  Google Scholar 

  • Grotto D, Batista BL, JMO S, MFH C, Santos D, Melo WJ, Barbosa F Jr (2015) Essential and nonessential element translocation in corn cultivated under sewage sludge application and associated health risk. Water Air Soil Pollut 226(8):261. https://doi.org/10.1007/s11270-015-2527-y.

    Article  Google Scholar 

  • Guney M, Zagury GJ (2014a) Children’s exposure to harmful elements in toys and low-cost jewelry: characterizing risks and developing a comprehensive approach. J Hazard Mat 271:321–330. https://doi.org/10.1016/j.jhazmat.2014.02.018

    Article  CAS  Google Scholar 

  • Guney M, Zagury GJ (2014b) Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry. Environ Sci Technol 48:1238−1246

    Article  Google Scholar 

  • Hill MK. Understanding environmental pollution. 3ed. New York (EUA): Cambridge University Press; 2010.585 p.

  • Houhou J, Lartiges BS, Montarges-Pelletier E, Sieliechi J, Ghanbaja J, Kohler A (2009) Sources, nature, and fate of heavy metal-bearing particles in the sewer system. Sci of Total Environ 407(23):6052–6062. https://doi.org/10.1016/j.scitotenv.2009.08.019

    Article  CAS  Google Scholar 

  • Huang R, Huang KL, Lin ZY, Wang JW, Lin C, Kuo YM (2013) Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. J Environ Manag 129:586–592. https://doi.org/10.1016/j.jenvman.2013.08.019

    Article  CAS  Google Scholar 

  • IARC. International Agency for Research on Cancer 1990 IARC monographs supplement 7—nickel and nickel compounds. 49:264–9

  • IARC. International Agency for Research on Cancer (2006) IARC monographs supplement 7—lead and lead compounds. 87:230–2

  • IARC. International Agency for Research on Cancer (2012) IARC Monographs—arsenic, metals, fibres and dusts. A review of Human Carcinogenic. Lyon. 100C.

  • Kalita J, Kumar V, Misra UK, Bora HK (2017) Memory and learning dysfunction following copper toxicity: biochemical and Immunohistochemical basis. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0619-y

  • Krzyzanowski F Jr, Zappelini L, Martone-Rocha S, Dropa M, Matté MH, Nacache F, Razzolini MTP (2014) Quantification and characterization of salmonella spp. isolates in sewage sludge with potential usage in agriculture. BMC Microbiol 14(1):263. https://doi.org/10.1186/s12866-014-0263-x

    Article  Google Scholar 

  • Krzyzanowski F Jr, Lauretto MS, Nardocci AC, Sato MIZ, Razzolini MTP (2016) Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion. Sci Total Environ 568:66–74

    Article  CAS  Google Scholar 

  • Kumar V, Kalita J, Bora H, Misra UK (2016) Temporal kinetics of organ damage in copper toxicity: a histopathological correlation in rat model. Regul Toxicol Pharmacol 81:372–380. https://doi.org/10.1016/j.yrtph.2016.09.025

    Article  CAS  Google Scholar 

  • Lacorte LEC, Vilela RAG, Silva RC, Chiesa AM, Tulio ES, Franco RR, Bravo ES (2013) The eradication of child labor in the production of jewelry and fashion jewelry in Limeira, SP. Rev Bras Saúde Ocup 38(128):199–215 (in Portuguese). https://doi.org/10.1590/S0303-76572013000200009

    Article  Google Scholar 

  • Li CT, Lee WJ, Huang KL, Fu SF, Lait YC (2007) Vitrification of chromium electroplating sludge. Environ Sci Technol 41(8):2950–2956. https://doi.org/10.1021/es062803d

    Article  CAS  Google Scholar 

  • Li H, Yang X, Xu W, Wu J, Xu J, Zhang G, Xi Y (2014) Application of dry composite electroplating sludge into preparation of cement-based decorative mortar as green pigment. J Clean Production 66(1):101–106. https://doi.org/10.1016/j.jclepro.2013.11.002

    Article  CAS  Google Scholar 

  • Liu Y, Ma L, Li Y, Zheng L (2007) Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere 67(5):1025–1032. https://doi.org/10.1016/j.chemosphere.2006.10.056

    Article  CAS  Google Scholar 

  • Maanan M (2007) Biomonitoring of heavy metals using Mytilus galloprovincialis in Safi Coastal Waters, Morocco. EnvironToxicol 22:525–531

    CAS  Google Scholar 

  • Machado TC, Lansarin MA (2016 Oct) Wastewater containing Cr (VI) treatment using solar tubular reactor. Water Sci Technol 74(7):1698–1705. https://doi.org/10.2166/wst.2016.344

    Article  CAS  Google Scholar 

  • Metcalf & Eddy, Inc (1991) Wastewater engineering. Treatment, disposal and reuse, 3rd ed., revised by George Tchobanoglous and Frank Burton. McGraw-Hill Book Co., Singapore

    Google Scholar 

  • Miaomiao H, Li W, Xinqiang L, Donglei W, Guangming T (2009) Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Manag 29(2):590–597. https://doi.org/10.1016/j.wasman.2008.07.005

    Article  Google Scholar 

  • Mishra A, Malik A (2012) Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Res 46(16):4991–4998. https://doi.org/10.1016/j.watres.2012.06.035

    Article  CAS  Google Scholar 

  • Nascimento AL, Junio GRZ, Sampaio RA, Fernandes LA, Carneiro JP, Barbosa CF (2015) Metais pesados no solo e mamoneira adubada com biossólido e silicato de cálcio e magnésio. R Bras Eng Agríc Ambiental 19(5):505–511. https://doi.org/10.1590/1807-1929/agriambi.v19n5p505-511

    Article  Google Scholar 

  • Odebrecht Ambiental [internet] Sewage: what we do? 2014 Available in: http://www.odebrechtambiental.com/limeira/agua-e-esgoto/seu-esgoto/. Accessed: 11 April 2015 (in Portuguese).

  • Odebrecht Ambiental [internet] Sewage: treatment process 2014 Available in: http://www.odebrechtambiental.com/limeira/agua-e-esgoto/seu-esgoto/seu-esgoto-processos-de-tratamento/. Accessed: 11 April 2015 (in Portuguese).

  • Östman M, Lindberg RH, Fick J, Bjöorn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328. https://doi.org/10.1016/j.watres.2017.03.011

    Article  Google Scholar 

  • Palmquist H, Hanaeus J (2005) Hazardous substances in separately collected grey- and blackwater from ordinary Swedish households. Sci Total Environ 348(1-3):151–163. https://doi.org/10.1016/j.scitotenv.2004.12.052

    Article  CAS  Google Scholar 

  • Peng G, Tian G (2010) Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge. Chem Eng J 165(2):388–394. https://doi.org/10.1016/j.cej.2010.10.006

    Article  CAS  Google Scholar 

  • PMSB (2013) Municipal sanitation basic plan. Sanitation municipal plan of Limeira, SP: planning area characterization (in Portuguese).

  • Rehman K, Fatima F, Waheed I, Akash MSH (2017) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234

    Article  Google Scholar 

  • São Paulo (State) (1976) Decree no. 8.468, September 8, 1976. Approves the Regulation of Law No. 997 May 31, 1976, which provides for the prevention and pollution environment control. Diário Oficial do Estado de São Paulo (in Portuguese).

  • Shamuyarira KK, Gumbo JR (2014) Assessment of heavy metals in municipal sewage sludge: a case study of Limpopo Province, South Africa. Int J Environ Res Public Health 11(3):2569–2579. https://doi.org/10.3390/ijerph110302569

    Article  CAS  Google Scholar 

  • Sikder AM, Hossain T, Khan MH, Hasan MA, Fakhruzzaman M, Turner JB, Pestov D, McCallister LS, Elahi KM (2017) Toxicity assessment of ash and dust from handmade gold jewelry manufacturing workshops in Bangladesh. Environ Monit Assess 189(6):279. https://doi.org/10.1007/s10661-017-5978-3

    Article  Google Scholar 

  • Soonthornnonda P, Christensen ER (2008) Source apportionment of pollutants and flows of combined sewer wastewater. Wat Res 42(8-9):1989–1998. https://doi.org/10.1016/j.watres.2007.11.034

    Article  CAS  Google Scholar 

  • Sousa FW, Sousa MJ, Oliveira IRN, Oliveira AG, Cavalcante RM, Fechine PBA, Neto VOS, Keukeleire DD, Nascimento RF (2009) Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory. J Environ Manag 90(11):3340–3344. https://doi.org/10.1016/j.jenvman.2009.05.016

    Article  CAS  Google Scholar 

  • Souza LCF, Canteras FB, Moreira S (2014) Analyses of heavy metals in sewage and sludge from treatment plants in the cities of Campinas and Jaguariúna, using synchrotron radiation total reflection X-ray fluorescence. Radiat Phys Chem 95:342–345. https://doi.org/10.1016/j.radphyschem.2013.01.025

    Article  CAS  Google Scholar 

  • STM. Standard Methods Committee (2011a) Standard methods for the examination of water and wastewater. Method 3500Cr-B: colorimetric method. Revision 1

  • STM. Standard Methods Committee (2011b) Standard methods for the examination of water and wastewater. 5310 B. High-temperature combustion method. Revision 1

  • STM. Standard Methods Committee (2011c) Standard methods for the examination of water and wastewater. Method 5310-D: wet-oxidation method. Revision 1

  • STM. Standard Methods Committee (2011d) Standard methods for the examination of water and wastewater. Method 1060: collection and preservation of samples. Revision 1

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99(14):6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  • Tavazzi S, Locoro G, Comero S, Sobiecka E, Loos R, Gans O, Ghiani M, Paracchini B, Umlauf G, Suurkuusk G, Cristache C, Fissiaux I, Alonso Riuz A, Gawlik BM (2012) Occurrence and levels of selected compounds in European sewage sludge samples (N° LB-NA-25598-EN-N). European Commission Joint Research Centre, Ispra

    Google Scholar 

  • Teare J, Kootbodien T, Naicker N, Mathee A (2015) The extent, nature and environmental health implications of cottage industries in Johannesburg, South Africa. Int J Environ Res Public Health 12(2):1894–1901. https://doi.org/10.3390/ijerph120201894

    Article  CAS  Google Scholar 

  • US EPA. United States Environmental Protection Agency (2004) Primer for municipal wastewater treatment systems. Washington

  • US EPA. United States Environmental Protection Agency (2007a) Method 3015A: microwave assisted acid digestion of aqueous samples and extracts. Revision 1

  • US EPA. United States Environmental Protection Agency (2007b) Method 6010C: inductively coupled plasma-atomic emission spectrometry. Revision 3

  • US EPA. United States Environmental Protection Agency (2007c) Method 7473: mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Revision 0

  • US EPA. United States Environmental Protection Agency (2007d) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils and oils. Revision 1

  • US EPA [internet]. United States Environmental Protection Agency (2016) Municipal wastewater: collection systems. 2016. Available in: https://www.epa.gov/npdes/municipal-wastewater#collection. Accessed: 19 may 2017.

  • Vilela RAG, Ferreira MAL (2008) Not everything shines in the production of jewelry in Limeira, SP. Rev Produção. 18(1):183–194 (in Portuguese). https://doi.org/10.1590/S0103-65132008000100014

    Google Scholar 

  • Weidenhamer JD, Newman BE, Clever A (2010) Assessment of leaching potential of highly leaded jewelry. J Hazard Mater 177(1–3):1150–1152. https://doi.org/10.1016/j.jhazmat.2010.01.016

    Article  CAS  Google Scholar 

  • Weidenhamer JD, Miller J, Guinn D, Pearson J (2011) Bioavailability of cadmium in inexpensive jewelry. Environ Health Perspect 119(7):1029–1033. https://doi.org/10.1289/ehp.1003011

    Article  CAS  Google Scholar 

  • Wilkie PJ, Hatzimhalis G, Koutoufides P, Connor MA (1996) The contribution of domestic sources to levels of key organic and inorganic pollutants in sewage: the case of Melbourne, Australia. Wat Sci Technol 34(3–4):63–70

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yang K, Zhu Y, Shan R, Shao Y, Tian C (2017) Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China. J Environ Manag 189:58–66

    Article  CAS  Google Scholar 

  • Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37(8):1062–1076. https://doi.org/10.1080/07388551.2017.1304357

    Article  CAS  Google Scholar 

  • Yost JL, Weidenhamer JD (2008) Accessible and total lead in low-cost jewelry items. Integr Environ Assess Manag 4(3):358–361. https://doi.org/10.1897/IEAM_2007-071.1

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: Na appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Quim Acta 606(2):135–150. https://doi.org/10.1016/j.aca.2007.11.018

    Article  CAS  Google Scholar 

  • Zhuang Z, Xu X, Wang Y, Wang Y, Huang F, Lin Z (2012) Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case. J Hazard Mater 211-212:414–419. https://doi.org/10.1016/j.jhazmat.2011.09.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the collaboration of all technicians and managers from State of São Paulo Environmental Company and Limeira’s Water and Sewage Company (Odebrecht Ambiental). We are grateful to Prof. Dr. Rodolfo Andrade de Gouveia Vilela for the collaboration at the beginning of this work and Matheus Angelini (scholarship student of CNPq Scientific Initiation) for the aid with sample digestion. We would like to thank the intermediation of GAEMA (Special Action Group for the Environment Defense of the Public Prosecution Office of the State of São Paulo).

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grants 2015/21253-0 and 2016/11087-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Polido Kaneshiro Olympio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salles, F.J., Sato, A.P.S., Luz, M.S. et al. The environmental impact of informal and home productive arrangement in the jewelry and fashion jewelry chain on sanitary sewer system. Environ Sci Pollut Res 25, 10701–10713 (2018). https://doi.org/10.1007/s11356-018-1357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1357-z

Keywords

Navigation