Abstract
Agriculture represents the second most important economic activity in the North Patagonian Region of Argentina and non-selective insecticides are still being used with significant implications to the quality of the environment. The range of concentrations (μg/L) determined for azinphosmethyl, chlorpyrifos, and carbaryl in drainage channels were from non-detected to 1.02, 1.45, and 11.21, respectively. Macroinvertebrate abundance and taxon richness in drainage channels were significantly lower in November compared to the other sampling months (October, February). The decrease in taxon richness observed in November was associated with chlorpyrifos and azinphosmethyl peak concentrations. The most remarkable changes were the decrease in sensitive taxa such as Baetidae and the increase in some tolerant taxa such as Chironomidae and Gastropoda.
For all three pesticides, the acute hazard quotient exceeded the risk criteria for invertebrates. The effects of the three pesticides on aquatic organisms, characterized by joint probability curves, showed that the LC50 of 10% of the species were exceeded five and three times by the concentrations of azinphosmethyl and chlorpyrifos during the study period, respectively. However, the correlation between the pesticide concentrations and both taxon richness and abundance of macroinvertebrates at each site (irrigation and drainage channels) was indicative that only chlorpyrifos was negatively correlated with both parameters (Spearman r2 − 0.61, p = 0.0051 and Spearman r2 − 0.59, p = 0.0068 for taxon richness and abundance correlation, respectively). We conclude that macroinvertebrate assemblages in drainage channels were highly affected by chlorpyrifos levels.




References
Anderson BS, Phillips BM, Hunt JW, Connor V, Richard N, Tjeerdema RS (2006) Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): relative effects of pesticides and suspended particles. Environ Pollut 141(3):402–408. https://doi.org/10.1016/j.envpol.2005.08.056
Anguiano OL, Ferrari A, Soleno J, Martinez MC, Venturino A, Pechen de D’Angelo AM, Montagna CM (2008) Enhanced esterase activity and resistance to azinphosmethyl in target and nontarget organisms. Environ Toxicol Chem 27(10):2117–2123. https://doi.org/10.1897/07-655.1
Beketov MA, Kefford BJ, Schafer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110(27):11039–11043. https://doi.org/10.1073/pnas.1305618110
Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3(3):364–372. https://doi.org/10.1002/ieam.5630030307
Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51(1):495–523. https://doi.org/10.1146/annurev.ento.51.110104.151124
Brock TCM, Lahr J, Van den Brink PJ (2000) Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides (No. 88, p. 127). Alterra
Clements WH, Carlisle DM, Courtney LA, Harrahy EA (2002) Integrating observational and experimental approaches to demonstrate causation in stream biomonitoring studies. Environ Toxicol Chem 21(6):1138–1146. https://doi.org/10.1002/etc.5620210605
Colville A, Jones P, Pablo F, Krassoi F, Hose G, Lim R (2008) Effects of chlorpyrifos on macroinvertebrate communities in coastal stream mesocosms. Ecotoxicology 17(3):173–180. https://doi.org/10.1007/s10646-007-0181-x
Crommentuijn T, Kalf DF, Polder MD, Posthumus R, Van de Plassche EJ (2000) Maximum permissible concentrations and negligible concentrations for pesticides. RIVM report 601501002. Bilthoven, The Netherlands
de Franca SM, Breda MO, Barbosa DRS, Araujo AMN, Guedes CA (2017) The sublethal effects of insecticides in insects. In: Shields VDC (ed) Biological control of Pest and vector insects. InTech, Rijeka, Croatia, pp 23–39. https://doi.org/10.5772/63274
Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56(6):516–520. https://doi.org/10.1002/(SICI)1526-4998(200006)56:6<516::AID-PS163>3.0.CO;2-0
Desneux N, Fauvergue X, Ois-xavier Dechaume-moncharmont F, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17
Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos: sistemática y biología. Fundación Miguel Lillo
ECOFRAM (1999) Ecological committee on FIFRA risk assessment methods: report of the aquatic workgroup. Washington, DC
El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54(4):653–661. https://doi.org/10.1007/s00244-007-9071-8
Fernández H, Domínguez E (2001) Guía para la determinación de los artrópodos bentónicos Sudamericanos. Entomotropica 16(3):219
Gärdenäs AI, Šimůnek J, Jarvis N, van Genuchten MT (2006) Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field. J Hydrol 329(3-4):647–660. https://doi.org/10.1016/j.jhydrol.2006.03.021
Hauer FR, Lamberti GA (2011) Methods in stream ecology. Academic Press
Infante D, David Allan J, Linke S, Norris R (2009) Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia 623(1):87–103. https://doi.org/10.1007/s10750-008-9650-3
Key PB, Wirth EF, Fulton MH (2006) A review of grass shrimp, Palaemonetes spp., as a bioindicator of anthropogenic impacts. Environ Bioindic 1(2):115–128. https://doi.org/10.1080/15555270600685115
King RS, Richardson CJ (2003) Integrating bioassessment and ecological risk assessment: an approach to developing numerical water-quality criteria. Environ Manag 31(6):795–809. https://doi.org/10.1007/s00267-002-0036-4
Laetz CA, Baldwin DH, Collier TK, Hebert V, Stark JD, Scholz NL (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific Salmon. Environ Health Perspect 117(3):348–353. https://doi.org/10.1289/ehp.0800096
Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Sci Total Environ 406(3):484–490. https://doi.org/10.1016/j.scitotenv.2008.05.054
Liess M, von Der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24(4):954–965. https://doi.org/10.1897/03-652.1
Loewy M, Kirs V, Carvajal G, Venturino A, Pechen de D’Angelo AM (1999) Groundwater contamination by azinphos methyl in the Northern Patagonic Region (Argentina). Sci Total Environ 225(3):211–218. https://doi.org/10.1016/S0048-9697(98)00365-9
Loewy RM, Carvajal LG, Novelli M, de D’Angelo AM (2003) Effect of pesticide use in fruit production orchards on shallow ground water. J Environ Sci Health B 38(3):317–325. https://doi.org/10.1081/PFC-120019898
Loewy RM, Carvajal LG, Novelli M, Pechen de D’Angelo AM (2006) Azinphos methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina. J Environ Sci Health B 41(6):869–881. https://doi.org/10.1080/03601230600805956
Loewy RM, Monza LB, Kirs VE, Savini MC (2011) Pesticide distribution in an agricultural environment in Argentina. J Environ Sci Health B 46(8):662–670. https://doi.org/10.1080/03601234.2012.592051
Lopretto EC, Tell G (1995) Ecosistemas de aguas continentales. Ediciones Sur
Miserendino ML, Brand C, Di Prinzio CY (2008) Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut 194(1-4):91–110. https://doi.org/10.1007/s11270-008-9701-4
Montagna CM, Anguiano OL, Gauna LE, D’Angelo AP (1999) Resistance to pyrethroids and DDT in a field-mixed population of Argentinean black flies (Diptera: Simuliidae). J Econ Entomol 92(6):1243–1245. https://doi.org/10.1093/jee/92.6.1243
Montagna CM, Gauna LE, D’Angelo AP, Anguiano OL (2012) Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina. Mem Inst Oswaldo Cruz 107(4):458–465. https://doi.org/10.1590/S0074-02762012000400003
Moore DR, Teed RS (2013) Risks of carbamate and organophosphate pesticide mixtures to salmon in the Pacific northwest. Integr Environ Assess Manag 9(1):70–78. https://doi.org/10.1002/ieam.1329
Newman MC, Unger MA (2003) Fundamentals of ecotoxicology. Lewis Publishers
Overmyer JP, Noblet R, Armbrust KL (2005) Impacts of lawn-care pesticides on aquatic ecosystems in relation to property value. Environ Pollut 137(2):263–272. https://doi.org/10.1016/j.envpol.2005.02.006
Phillips PJ, Bode RW (2004) Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Pest Manag Sci 60(6):531–543. https://doi.org/10.1002/ps.879
Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates, Environ Sci Pollut Res Int 22 68–102, 1, DOI: https://doi.org/10.1007/s11356-014-3471-x
Sánchez VG, Gutiérrez CA, Gomez DS, Loewy M, Guiñazú N (2016) Organophosphate and carbamate pesticide residues in drinking groundwater in the rural areas of Plottier and Senillosa, North Patagonia, Argentina Argentina. Acta Toxicológica Argentina 24(1):48–57 (Article in Spanish)
Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382(2-3):272–285. https://doi.org/10.1016/j.scitotenv.2007.04.040
Schäfer RB, Bundschuh M, Rouch DA, Szöcs E, Peter C, Pettigrove V, Kefford BJ (2012) Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Sci Total Environ 415:69–78. https://doi.org/10.1016/j.scitotenv.2011.05.063
Schulz R, Thiere G, Dabrowski JM (2002) A combined microcosm and field approach to evaluate the aquatic toxicity of azinphosmethyl to stream communities. Environ Toxicol Chem 21(10):2172–2178. https://doi.org/10.1002/etc.5620211021
SETAC (1994) Aquatic risk assessment and mitigation dialogue group. SETAC Press
Sokal RR, Rohlf FJ (1995) The principles and practice of statistics in biological research. Edition, New York, p 3
Szöcs E, Kefford BJ, Schafer RB (2012) Is there an interaction of the effects of salinity and pesticides on the community structure of macroinvertebrates? Sci Total Environ 437:121–126. https://doi.org/10.1016/j.scitotenv.2012.07.066
Thiere G, Schulz R (2004) Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa. Water Res 38(13):3092–3102. https://doi.org/10.1016/j.watres.2004.04.045
USEPA, Environmental Protection Agency (2015) PRO 3535A https://www.epa.gov/sites/production/files/2015-12/documents/3535a.pdf
USEPA, (2014). ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. Available: http:/www.epa.gov/ecotox
Van Wijngaarden RP, Brock TC, Van den Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology 14(3):355–380. https://doi.org/10.1007/s10646-004-6371-x
von der Ohe PC, Liess M (2004) Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environ Toxicol Chem 23(1):150–156. https://doi.org/10.1897/02-577
Wallace JB, Grubaugh JW, Whiles MR (1996) Biotic indices and stream ecosystem processes: results from an experimental study. Ecol Appl 6(1):140–151. https://doi.org/10.2307/2269560
Acknowledgments
We would like to thank the International Atomic Energy Agency (IAEA) and Red Analítica de Latinoamérica y el Caribe (RALACA) for the collaboration and technical support. N. Guiñazú is member of the Research Career of CONICET. B. Lares thanks CONICET for the fellowship granted.
Funding
This study was funded by the Universidad Nacional del Comahue.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Philippe Garrigues
Rights and permissions
About this article
Cite this article
Macchi, P., Loewy, R.M., Lares, B. et al. The impact of pesticides on the macroinvertebrate community in the water channels of the Río Negro and Neuquén Valley, North Patagonia (Argentina). Environ Sci Pollut Res 25, 10668–10678 (2018). https://doi.org/10.1007/s11356-018-1330-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-018-1330-x