Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10668–10678 | Cite as

The impact of pesticides on the macroinvertebrate community in the water channels of the Río Negro and Neuquén Valley, North Patagonia (Argentina)

  • Pablo Macchi
  • Ruth Miriam Loewy
  • Betsabé Lares
  • Lorena Latini
  • Liliana Monza
  • Natalia Guiñazú
  • Cristina Mónica Montagna
Research Article


Agriculture represents the second most important economic activity in the North Patagonian Region of Argentina and non-selective insecticides are still being used with significant implications to the quality of the environment. The range of concentrations (μg/L) determined for azinphosmethyl, chlorpyrifos, and carbaryl in drainage channels were from non-detected to 1.02, 1.45, and 11.21, respectively. Macroinvertebrate abundance and taxon richness in drainage channels were significantly lower in November compared to the other sampling months (October, February). The decrease in taxon richness observed in November was associated with chlorpyrifos and azinphosmethyl peak concentrations. The most remarkable changes were the decrease in sensitive taxa such as Baetidae and the increase in some tolerant taxa such as Chironomidae and Gastropoda.

For all three pesticides, the acute hazard quotient exceeded the risk criteria for invertebrates. The effects of the three pesticides on aquatic organisms, characterized by joint probability curves, showed that the LC50 of 10% of the species were exceeded five and three times by the concentrations of azinphosmethyl and chlorpyrifos during the study period, respectively. However, the correlation between the pesticide concentrations and both taxon richness and abundance of macroinvertebrates at each site (irrigation and drainage channels) was indicative that only chlorpyrifos was negatively correlated with both parameters (Spearman r2 − 0.61, p = 0.0051 and Spearman r2 − 0.59, p = 0.0068 for taxon richness and abundance correlation, respectively). We conclude that macroinvertebrate assemblages in drainage channels were highly affected by chlorpyrifos levels.


Agricultural land use Aquatic pollution Insecticides Risk assessment Macroinvertebrates North Patagonia 



We would like to thank the International Atomic Energy Agency (IAEA) and Red Analítica de Latinoamérica y el Caribe (RALACA) for the collaboration and technical support. N. Guiñazú is member of the Research Career of CONICET. B. Lares thanks CONICET for the fellowship granted.

Funding information

This study was funded by the Universidad Nacional del Comahue.


  1. Anderson BS, Phillips BM, Hunt JW, Connor V, Richard N, Tjeerdema RS (2006) Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): relative effects of pesticides and suspended particles. Environ Pollut 141(3):402–408. CrossRefGoogle Scholar
  2. Anguiano OL, Ferrari A, Soleno J, Martinez MC, Venturino A, Pechen de D’Angelo AM, Montagna CM (2008) Enhanced esterase activity and resistance to azinphosmethyl in target and nontarget organisms. Environ Toxicol Chem 27(10):2117–2123. CrossRefGoogle Scholar
  3. Beketov MA, Kefford BJ, Schafer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110(27):11039–11043. CrossRefGoogle Scholar
  4. Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3(3):364–372. CrossRefGoogle Scholar
  5. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51(1):495–523. CrossRefGoogle Scholar
  6. Brock TCM, Lahr J, Van den Brink PJ (2000) Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides (No. 88, p. 127). AlterraGoogle Scholar
  7. Clements WH, Carlisle DM, Courtney LA, Harrahy EA (2002) Integrating observational and experimental approaches to demonstrate causation in stream biomonitoring studies. Environ Toxicol Chem 21(6):1138–1146. CrossRefGoogle Scholar
  8. Colville A, Jones P, Pablo F, Krassoi F, Hose G, Lim R (2008) Effects of chlorpyrifos on macroinvertebrate communities in coastal stream mesocosms. Ecotoxicology 17(3):173–180. CrossRefGoogle Scholar
  9. Crommentuijn T, Kalf DF, Polder MD, Posthumus R, Van de Plassche EJ (2000) Maximum permissible concentrations and negligible concentrations for pesticides. RIVM report 601501002. Bilthoven, The NetherlandsGoogle Scholar
  10. de Franca SM, Breda MO, Barbosa DRS, Araujo AMN, Guedes CA (2017) The sublethal effects of insecticides in insects. In: Shields VDC (ed) Biological control of Pest and vector insects. InTech, Rijeka, Croatia, pp 23–39. Google Scholar
  11. Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56(6):516–520.<516::AID-PS163>3.0.CO;2-0 CrossRefGoogle Scholar
  12. Desneux N, Fauvergue X, Ois-xavier Dechaume-moncharmont F, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17CrossRefGoogle Scholar
  13. Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos: sistemática y biología. Fundación Miguel LilloGoogle Scholar
  14. ECOFRAM (1999) Ecological committee on FIFRA risk assessment methods: report of the aquatic workgroup. Washington, DCGoogle Scholar
  15. El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54(4):653–661. CrossRefGoogle Scholar
  16. Fernández H, Domínguez E (2001) Guía para la determinación de los artrópodos bentónicos Sudamericanos. Entomotropica 16(3):219Google Scholar
  17. Gärdenäs AI, Šimůnek J, Jarvis N, van Genuchten MT (2006) Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field. J Hydrol 329(3-4):647–660. CrossRefGoogle Scholar
  18. Hauer FR, Lamberti GA (2011) Methods in stream ecology. Academic PressGoogle Scholar
  19. Infante D, David Allan J, Linke S, Norris R (2009) Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia 623(1):87–103. CrossRefGoogle Scholar
  20. Key PB, Wirth EF, Fulton MH (2006) A review of grass shrimp, Palaemonetes spp., as a bioindicator of anthropogenic impacts. Environ Bioindic 1(2):115–128. CrossRefGoogle Scholar
  21. King RS, Richardson CJ (2003) Integrating bioassessment and ecological risk assessment: an approach to developing numerical water-quality criteria. Environ Manag 31(6):795–809. CrossRefGoogle Scholar
  22. Laetz CA, Baldwin DH, Collier TK, Hebert V, Stark JD, Scholz NL (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific Salmon. Environ Health Perspect 117(3):348–353. CrossRefGoogle Scholar
  23. Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Sci Total Environ 406(3):484–490. CrossRefGoogle Scholar
  24. Liess M, von Der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24(4):954–965. CrossRefGoogle Scholar
  25. Loewy M, Kirs V, Carvajal G, Venturino A, Pechen de D’Angelo AM (1999) Groundwater contamination by azinphos methyl in the Northern Patagonic Region (Argentina). Sci Total Environ 225(3):211–218. CrossRefGoogle Scholar
  26. Loewy RM, Carvajal LG, Novelli M, de D’Angelo AM (2003) Effect of pesticide use in fruit production orchards on shallow ground water. J Environ Sci Health B 38(3):317–325. CrossRefGoogle Scholar
  27. Loewy RM, Carvajal LG, Novelli M, Pechen de D’Angelo AM (2006) Azinphos methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina. J Environ Sci Health B 41(6):869–881. CrossRefGoogle Scholar
  28. Loewy RM, Monza LB, Kirs VE, Savini MC (2011) Pesticide distribution in an agricultural environment in Argentina. J Environ Sci Health B 46(8):662–670. Google Scholar
  29. Lopretto EC, Tell G (1995) Ecosistemas de aguas continentales. Ediciones SurGoogle Scholar
  30. Miserendino ML, Brand C, Di Prinzio CY (2008) Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut 194(1-4):91–110. CrossRefGoogle Scholar
  31. Montagna CM, Anguiano OL, Gauna LE, D’Angelo AP (1999) Resistance to pyrethroids and DDT in a field-mixed population of Argentinean black flies (Diptera: Simuliidae). J Econ Entomol 92(6):1243–1245. CrossRefGoogle Scholar
  32. Montagna CM, Gauna LE, D’Angelo AP, Anguiano OL (2012) Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina. Mem Inst Oswaldo Cruz 107(4):458–465. CrossRefGoogle Scholar
  33. Moore DR, Teed RS (2013) Risks of carbamate and organophosphate pesticide mixtures to salmon in the Pacific northwest. Integr Environ Assess Manag 9(1):70–78. CrossRefGoogle Scholar
  34. Newman MC, Unger MA (2003) Fundamentals of ecotoxicology. Lewis PublishersGoogle Scholar
  35. Overmyer JP, Noblet R, Armbrust KL (2005) Impacts of lawn-care pesticides on aquatic ecosystems in relation to property value. Environ Pollut 137(2):263–272. CrossRefGoogle Scholar
  36. Phillips PJ, Bode RW (2004) Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Pest Manag Sci 60(6):531–543. CrossRefGoogle Scholar
  37. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates, Environ Sci Pollut Res Int 22 68–102, 1, DOI:
  38. Sánchez VG, Gutiérrez CA, Gomez DS, Loewy M, Guiñazú N (2016) Organophosphate and carbamate pesticide residues in drinking groundwater in the rural areas of Plottier and Senillosa, North Patagonia, Argentina Argentina. Acta Toxicológica Argentina 24(1):48–57 (Article in Spanish)Google Scholar
  39. Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382(2-3):272–285. CrossRefGoogle Scholar
  40. Schäfer RB, Bundschuh M, Rouch DA, Szöcs E, Peter C, Pettigrove V, Kefford BJ (2012) Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Sci Total Environ 415:69–78. CrossRefGoogle Scholar
  41. Schulz R, Thiere G, Dabrowski JM (2002) A combined microcosm and field approach to evaluate the aquatic toxicity of azinphosmethyl to stream communities. Environ Toxicol Chem 21(10):2172–2178. CrossRefGoogle Scholar
  42. SETAC (1994) Aquatic risk assessment and mitigation dialogue group. SETAC PressGoogle Scholar
  43. Sokal RR, Rohlf FJ (1995) The principles and practice of statistics in biological research. Edition, New York, p 3Google Scholar
  44. Szöcs E, Kefford BJ, Schafer RB (2012) Is there an interaction of the effects of salinity and pesticides on the community structure of macroinvertebrates? Sci Total Environ 437:121–126. CrossRefGoogle Scholar
  45. Thiere G, Schulz R (2004) Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa. Water Res 38(13):3092–3102. CrossRefGoogle Scholar
  46. USEPA, Environmental Protection Agency (2015) PRO 3535A
  47. USEPA, (2014). ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. Available: http:/
  48. Van Wijngaarden RP, Brock TC, Van den Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology 14(3):355–380. CrossRefGoogle Scholar
  49. von der Ohe PC, Liess M (2004) Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environ Toxicol Chem 23(1):150–156. CrossRefGoogle Scholar
  50. Wallace JB, Grubaugh JW, Whiles MR (1996) Biotic indices and stream ecosystem processes: results from an experimental study. Ecol Appl 6(1):140–151. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICETUniversidad Nacional del ComahueNeuquénArgentina
  2. 2.Instituto de Investigación en Paleobiología y Geología (IIPG), CONICETUniversidad Nacional de Río NegroGeneral RocaArgentina
  3. 3.LIBIQUIMA, Facultad de IngenieríaUniversidad Nacional del ComahueNeuquénArgentina
  4. 4.Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la SaludUniversidad Nacional del ComahueNeuquénArgentina

Personalised recommendations