Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10867–10877 | Cite as

Agricultural technologies and carbon emissions: evidence from Jordanian economy

  • Mohanad Ismael
  • Fathi Srouji
  • Mohamed Amine Boutabba
Research Article
  • 111 Downloads

Abstract

Theoretically, agriculture can be the victim and the cause of climate change. Using annual data for the period of 1970–2014, this study examines the interaction between agriculture technology factors and the environment in terms of carbon emissions in Jordan. The results provide evidence for unidirectional causality running from machinery, subsidies, and other transfers, rural access to an improved water source and fertilizers to carbon emissions. The results also reveal the existence of bidirectional causality between the real income and carbon emissions. The variance error decompositions highlight the importance of subsidies and machinery in explaining carbon emissions. They also show that fertilizers, the crop and livestock production, the land under cereal production, the water access, the agricultural value added, and the real income have an increasing effect on carbon emissions over the forecast period. These results are important so that policy-makers can build up strategies and take in considerations the indicators in order to reduce carbon emissions in Jordan.

Keywords

CO2 emissions Agricultural technologies Improved water source Jordan 

JEL classification

C10 C51 Q16 Q54 

Notes

Acknowledgements

We would like to thank the editor and two anonymous referees whose helpful contributions have improved upon the quality of the paper. Thanks are also due to the participants of the Seconds Meetings on Economic and Quantitative Analysis: Sustainable Development Goals (Hammamet, 2016) for providing comments on earlier drafts of this article. The Financial support by the LABEX MME-DII is also gratefully acknowledged. Errors and omissions, if any, are our own.

References

  1. Acemoglu D, Aghion P, Bursztyn L, Hemous D (2012) The environment and directed technical change. Am Econ Rev 102(1):131–166.  https://doi.org/10.1257/aer.102.1.131 CrossRefGoogle Scholar
  2. Arapatsakos CI, Gemtos TA (2008) Tractor engine and gas emissions. WSEAS Trans Environ Dev 4:897–906Google Scholar
  3. Ben Jebli M, Ben Youssef S (2015) The role of renewable energy and agriculture in reducing CO2 emissions: evidence for North Africa countries. MPRA No 68477Google Scholar
  4. Buragiene S, Sarauskis E, Romaneckas K, Sakalauskas A, Uzupis A, Katkevicius E (2011) Soil temperature and gas (CO2 and O2) emissions from soil under different tillage machinery systems. J Food, Agric Environ 9:480–485Google Scholar
  5. Busche D, Hayek B (2015) Energy efficiency in water pumping in Jordan. German-Jordanian water portfolio, 3rd Arab water weekGoogle Scholar
  6. Cleveland CJ (1995) The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990. Agric Ecosyst Environ 55(2):111–121.  https://doi.org/10.1016/0167-8809(95)00615-Y CrossRefGoogle Scholar
  7. Directorate-General for Internal Policies (2014) Measures at farm level to reduce greenhouse gas emissions. Policy Department Structural and Cohesion Policies, European ParliamentGoogle Scholar
  8. Dolsak N (2009) Climate change policy implication: a cross sectional analysis. Rev Policy Res 26(5):551–570.  https://doi.org/10.1111/j.1541-1338.2009.00405.x CrossRefGoogle Scholar
  9. Elliott G, Rothenberg T, Stock JH (1996) Efficient tests for an autoregressive unit root. Econometrica 64:813–836CrossRefGoogle Scholar
  10. Holtz G, Fink T (2015) Analyzing the transition of Jordan’s electricity system: underpinning transition path ways with mechanism. Paper presented at international sustainability transition conference 2015, Brighton, UKGoogle Scholar
  11. Johansen S (1988) Statistical analysis of cointegration vectors. J Econ Dyn Control 12(2-3):231–254.  https://doi.org/10.1016/0165-1889(88)90041-3 CrossRefGoogle Scholar
  12. Johansen S (1991) Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59(6):1551–1580.  https://doi.org/10.2307/2938278 CrossRefGoogle Scholar
  13. Karkacier O, Goktolga ZG, Cicek A (2006) A regression analysis of the effect of energy use in agriculture. Energy Policy 34(18):3796–3800.  https://doi.org/10.1016/j.enpol.2005.09.001 CrossRefGoogle Scholar
  14. Kennedy S (2000) Energy use in American agriculture. Available at: http://web.mit.edu/10.391J/www/proceedings/Agriculture_Kennedy2000.pdf
  15. Kroll S, Shogren JF (2008) Domestic politics and climate change: international public goods in two-level games. Camb Rev Int Aff 21(4):563–583.  https://doi.org/10.1080/09557570802452904 CrossRefGoogle Scholar
  16. Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. J Econ 54(1-3):159–178.  https://doi.org/10.1016/0304-4076(92)90104-Y CrossRefGoogle Scholar
  17. Lütkepohl H (2005) New introduction to multiple time series analysis. Springer, New York.  https://doi.org/10.1007/978-3-540-27752-1 CrossRefGoogle Scholar
  18. MacKinnon JG (1991) Critical values for cointegration tests. In: Engle RF, Granger CWJ (eds) Long-run economic relationships: readings in Cointegration, 1st edn. Oxford University Press, Oxford, pp 267–277Google Scholar
  19. Ministry of Water and Irrigation (2016a) National water strategy of Jordan 2016–2025Google Scholar
  20. Ministry of Water and Irrigation (2016b) Energy efficiency and renewable energy policyGoogle Scholar
  21. NRDC (2006) Agency cowed by factory farm lobby: shirking responsibility to protect public health. https://www.nrdc.org/media/2006/060622-1
  22. Pellerin S, Bamière L, Anger D, Béline F, Benoît M, Butault JP, Chenu C, Colnenne-David C, de Cara S, Delame N, Doreau M, Dupraz P, Faverdin P, Garcia-Launay F, Hassouna M, Hénault C, Jeuffroy MH, Klumpp K, Metay A, Moran D, Recous S, Samson E, Savini I, Pardon L (2013) Quelle contribution de l'agriculture française à la réduction des émissions de gaz à effet de serre? Potentiel d'atténuation et coût de dix actions techniques. Synthèse du rapport d'étude, INRA (France), p. 92Google Scholar
  23. Perron P (1989) The great crash, the oil price shock and the unit root hypothesis. Econometrica 57(6):1361–1401.  https://doi.org/10.2307/1913712 CrossRefGoogle Scholar
  24. Phillips PCB, Ouliaris S (1990) Asymptotic properties of residual based tests for cointegration. Econometrica 58(1):165–193.  https://doi.org/10.2307/2938339 CrossRefGoogle Scholar
  25. Popp D, Newell RG, Jaffe AB (2009) Energy, the environment and technological change. NBER working paper no. 14832Google Scholar
  26. Rádics JP, Jóri IJ, Fenyvesi L (2014) Soil CO2 emission induced by tillage machines. Int J Appl Sci Technol 4:37–44Google Scholar
  27. Rajaniemi M, Mikkola H, Ahokas J (2011) Greenhouse gas emissions from oats, barley, wheat and rye production. Agron Res Biosyst Eng Spec Issue 1:189–195Google Scholar
  28. Šarauskis E, Buragienė S, Masilionytė L, Romaneckas K, Avižienytė D, Sakalauskas A (2014) Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 69:227–235.  https://doi.org/10.1016/j.energy.2014.02.090 CrossRefGoogle Scholar
  29. Seebauer M (2014) Whole farm quantification of GHG emissions within smallholder farms in developing countries. Environ Res Lett 9:1–13CrossRefGoogle Scholar
  30. Silva-Olaya AM, Cerri CEP, La Scala N, Dias CTS, Cerri CC (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environ Res Lett 8, 8(1)Google Scholar
  31. Soni P, Taewichit C, Salokhe VM (2013) Energy consumption and CO2 emissions in rainfed agricultural production systems of northeast Thailand. Agric Syst 116:25–36CrossRefGoogle Scholar
  32. The United Nations Framework Convention on Climate Change (UNFCCC) (2014) Jordan’s third national communication on climate change. UNDP Google Scholar
  33. Toda HY, Yamamoto T (1995) Statistical inference in vector autoregressions with possibly integrated processes. J Econ 66(1-2):225–250.  https://doi.org/10.1016/0304-4076(94)01616-8 CrossRefGoogle Scholar
  34. Turkekul B, Unakitan G (2011) A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture. Energy Policy 39(5):2416–2423.  https://doi.org/10.1016/j.enpol.2011.01.064 CrossRefGoogle Scholar
  35. Valin H, Havlik P, Mosnier A, Herrero M, Schmid E. Obersteiner M (2013) Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ Res Lett 8: 1–9Google Scholar
  36. West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108(2):145–154.  https://doi.org/10.1016/j.agee.2005.01.002 CrossRefGoogle Scholar
  37. World Bank (2015) World development indicators—2015. World Bank, Washington D.C.  https://doi.org/10.1596/978-1-4648-0440-3 CrossRefGoogle Scholar
  38. World Resources Institute Climate Analysis Indicators Tool (WRI CAIT) (2016) Greenhouse gas emissions in Jordan. USAID Google Scholar
  39. Zivot E, Andrews D (1992) Further evidence on the great crash, the oil price shock and the unit root hypothesis. J Bus Econ Stat 10:251–270Google Scholar
  40. Zou X, Li Y, Li K, Cremades R, Gao Q, Wan Y, Quin X (2015) Greenhouse gas emissions from agricultural irrigation in China. Mitig Adapt Strateg Glob Chang 20(2):295–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EconomicsBirzeit UniversityBirzeitState of Palestine
  2. 2.EPEE, Univ Evry, Université Paris-SaclayEvryFrance

Personalised recommendations