Environmental Science and Pollution Research

, Volume 25, Issue 12, pp 11670–11682 | Cite as

Influence of land use on the health of a detritivorous fish (Ancistrus mullerae) endemic to the Iguassu ecoregion: relationship between agricultural land use and severe histopathological alterations

  • Mayara Pereira Neves
  • João Paulo de Arruda Amorim
  • Rosilene Luciana Delariva
Research Article


This study aimed to evaluate the histopathological biomarkers of the gills and liver of endemic catfish to test the hypothesis that, in environments under intense land use by agricultural activities, histopathological alterations occur more severely. Samples were collected by electrofishing in seven streams in the Lower Iguaçu basin quarterly from August 2015 to February 2016. The gills and livers were processed according to routine histological methods and examined by light microscopy. The histopathological alterations observed in fish from the streams with a higher percentage of natural vegetation cover were considered modest and indicated normal functioning of the organ (such as edema, hyperplasia, and leukocyte infiltration). As predicted, fish collected in streams with higher agricultural influence presented moderate to severe damage (aneurysm, vacuolization and cytoplasmic degeneration, and pyknotic nucleus). The abundance of chloride cells was significantly increased in the gills of Ancistrus mullerae collected in rural streams. In addition, in most streams, mucous cells were more abundant during the rainy period. Significant differences were observed in the histopathological index (HI) of the gills and livers, where severe histopathological alterations occurred in fish from streams with a higher agricultural influence. The observed alterations were more severe in the liver than in the gills, which are indeed related to the liver’s key role in the detoxification of xenobiotics. We conclude that more severe histological alterations occurred in fish from streams with the highest land use by agricultural activities. Thus, our work provides important insight into the conservation and management of natural resources.


Biomonitoring Loricariidae Histopathology Rural influence Preservation areas 



We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Universidade Estadual do Oeste do Paraná (UNIOESTE), and to all our colleagues for their help in fieldwork and in the laboratory.


  1. Aazami J, Esmaili-Sari A, Abdoli A, Sohrabi H, Van Den Brink PJ (2015) Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices. J Environ Health Sci Eng 13(1):2–12. CrossRefGoogle Scholar
  2. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Pérez MHS, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58(5):403–414. CrossRefGoogle Scholar
  3. Ayoola SO (2008) Histopathological effects of glyphosate on juvenile African catfish (Clarias gariepinus). Am Eur J Agric Environ Sci 4:362–367CrossRefGoogle Scholar
  4. Baumgartner G, Pavanelli CS, Baumgartner D, Bifi AG, Debona T, Frana VA (2012) Peixes do baixo rio Iguaçu. EDUEM, Maringá. CrossRefGoogle Scholar
  5. Bezerra K (2016) R7 Estudo prático: os rios mais poluídos do Brasil. Accessed 15 May 2017
  6. Bifi AG, Pavanelli CS, Zawadzki CH (2009) Three new species of Ancistrus Kner, 1854 (Siluriformes: Loricariidae) from the Rio Iguaçu basin, Paraná State, Brazil. Zootaxa 2275:41–59Google Scholar
  7. Bortolozo FR, Favaretto N, Dieckow J, Moraes A, Vezzani FM, Silva EDB (2015) Water, sediment and nutrient retention in native vegetative filter strips of Southern Brazil. Int J Plant Nutr Soil Sci 4(5):426–436. CrossRefGoogle Scholar
  8. Brasil (2012) Lei n° 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis nos 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis nos 4.771, de 15 de setembro de 1965, e 7.754, de 14 de abril de 1989, e a Medida Provisória no 2.166–67, de 24 de agosto de 2001; e dá outras providências. Accessed 9 March 2017
  9. Bueno-Krawczyk AC, Guiloski IC, Piancini LD, Azevedo JC, Ramsdorf WA, Ide AH, Guimarães ATB, Cestari MM, Silva HCA (2015) Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere 135:257–264. CrossRefGoogle Scholar
  10. Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop Ichthyol 5(3):327–336. CrossRefGoogle Scholar
  11. Campos JB (1998) Desmatamentos no Paraná. Cadernos da Biodiversidade 1:1–2Google Scholar
  12. Carrasco LR, Larrosa C, Milner-Gulland EJ, Edwards DP (2014) A double-edged sword for tropical forests. Science 346(6205):38–40. CrossRefGoogle Scholar
  13. Casatti L (2010) Alterações no Código Florestal Brasileiro: impactos potenciais sobre a ictiofauna. Biota Neotrop 10(4):31–34. CrossRefGoogle Scholar
  14. Cengiz EI, Unlu E (2006) Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: a microscopic study. Environ Toxicol Pharmacol 21(3):246–253. CrossRefGoogle Scholar
  15. Cerqueira CCC, Fernandes MN (2002) Gill tissue recovery after copper exposure and blood parameter responses in the tropical fish Prochilodus scrofa. Ecotoxicol Environ Saf 52(2):83–91. CrossRefGoogle Scholar
  16. Constantini D (2015) Land-use changes and agriculture in the tropics: pesticides as an overlooked threat to wildlife. Biodivers Conserv 24(7):1837–1839. CrossRefGoogle Scholar
  17. Dang M, Nørregaard R, Bach L, Sonne C, Søndergaard J, Gustavson K, Aastrup P, Nowak B (2017) Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland. Environ Res 153:171–180. CrossRefGoogle Scholar
  18. Esteves FA (2011) Fundamentos de Limnologia, 3rd edn. Interciência, Rio de JaneiroGoogle Scholar
  19. Evans DH, Piermarini PM, Choe CP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1):97–177. CrossRefGoogle Scholar
  20. Flores-Lopes F, Thomaz AT (2011) Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Braz J Biol 71(1):179–188. CrossRefGoogle Scholar
  21. Fonseca AR, Fernandes LFS, Fontainha-Fernandes A, Monteiro SM, Pacheco FAL (2016) From catchment to fish: impact of anthropogenic pressures on gill histopathology. Sci Total Environ 550:972–986. CrossRefGoogle Scholar
  22. Freire CA, Souza-Bastos LR, Chiesse J, Tincani FH, Piancini LDS, Randi MAF, Prodocimo V, Cestari MM, Silva-de-Assis HCS, Abilhoa V, Vitule JRS, Bastos LP, de Oliveira-Ribeiro CA (2015) A multibiomarker evaluation of urban, industrial and agricultural exposure of small characins in a large freshwater basin in southern Brazil. Environ Sci Pollut Res Int 22(17):13263–13277. CrossRefGoogle Scholar
  23. Georgieva E, Stoyanova S, Velcheva I, Vasileva T, Bivolarski V, Iliev I, Yancheva V (2014) Metal effects on histological and biochemical parameters of common rudd (Scardinius erythrophthalmus L.) Arch Pol Fish 22:197–206CrossRefGoogle Scholar
  24. Ghisi NC, Oliveira EC, Mota TEM, Vanzetto GV, Roque AA, Godinho JP, Bettim FL (2016) Integrated biomarker response in catfish Hypostomus ancistroides by multivariate analysis in the Pirapó River, southern Brazil. Chemosphere 161:69–79. CrossRefGoogle Scholar
  25. Gotelli NJ, Ellison AM (2011) Princípios de estatística em ecologia. Artmed, Porto AlegreGoogle Scholar
  26. Hammer DA, Harper T, Ryan PD (2001) PAST: Paleontological Statistics Software package for education and data analysis. Paleontologia Electronica 4:1–9Google Scholar
  27. Heath AG (1987) Water pollution and fish physiology. CRC Press, Boca RatonGoogle Scholar
  28. IBGE (2015) Indicadores de desenvolvimento sustentável: Brasil: 2015/IBGE, Coordenação de Recursos Naturais e Estudos Ambientais e Coordenação de Geografia. IBGE, Rio de JaneiroGoogle Scholar
  29. Jones R, Reid L (1978) Secretory cells and their glycoproteins in health and disease. Br Med Bull 34(1):9–16. CrossRefGoogle Scholar
  30. Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimato-logie. Gebrüder Borntraeger, BerlinGoogle Scholar
  31. Lampert W, Sommer U (2007) Limnoecology: the ecology of lakes and streams, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  32. Lee JW, Kim JW, De Riu N, Moniello G, Hung SS (2012) Histopathological alterations of juvenile green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) exposed to graded levels of dietary methylmercury. Aquat Toxicol 109:90–99. CrossRefGoogle Scholar
  33. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, OxfordGoogle Scholar
  34. Lourençato LF, Favaretto N, Hansel FA, Scheer AP, Junior LFLL, Souza LCP, Dieckow J, Buch AC (2015) Effects on water quality of pesticide use in farmland under intensive soil management in Southern Brazil. Int J Plant Nutr Soil Sci 5(3):155–166. CrossRefGoogle Scholar
  35. Martinez CBR, Nagae MY, Zaia CTBV, Zaia DAM (2004) Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Braz J Biol 64(4):797–807. CrossRefGoogle Scholar
  36. Montes CS, Ferreira MAP, Santos SSD, Rocha RM (2015) Environmental quality of an estuary in Amazon delta using immunohistochemical and morphological analyses of gill as biomarkers. Acta Sci Biol Sci 37(1):113–121. CrossRefGoogle Scholar
  37. Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier Academic Press, BurlingtonGoogle Scholar
  38. Neves MP, Delariva RL, Wolff LL (2015) Diet and ecomorphological relationships of an endemic, species-poor fish assemblage in a stream in the Iguaçu National Park. Neotrop Ichthyol 13(1):245–254. CrossRefGoogle Scholar
  39. Nimet J, Guimarães ATB, Delariva RL (2017) Use of muscular cholinesterase of Astyanax bifasciatus (Teleostei, Characidae) as a biomarker in biomonitoring of rural streams. Bull Environ Contam Toxicol 17(2):1–7. Google Scholar
  40. Parolin M, Volkmer-Ribeiro C, Leandrini JA (2010) Abordagem interdisciplinar em bacias hidrográficas no Estado do Paraná. Editora Fecilcam, Campo MourãoGoogle Scholar
  41. Paulino MG, Benze TP, Sadauskas-Henrique H, Sakuragui MM, Fernandes JB, Fernandes MN (2014) The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: bioaccumulation and histopathological biomarkers. Sci Total Environ 497:293–306. CrossRefGoogle Scholar
  42. Paulino MG, Sakuragui MM, Fernandes MN (2012) Effects of atrazine on the gill cells and ionic balance in a neotropical fish, Prochilodus lineatus. Chemosphere 86(1):1–7. CrossRefGoogle Scholar
  43. Poleksic V, Lenhardt M, Jaric I, Djordjevic D, Gacic Z, Cvijanovic G, Raskovic B (2010) Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environ Toxicol Chem 29:515–521CrossRefGoogle Scholar
  44. Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Fishing News Books, OxfordGoogle Scholar
  45. Powell MD, Speare DJ, Wright GM (1995) Morphological changes in rainbow trout (Oncorhynchus mykiss) gill epithelia following repeated intermittent exposure to chloramine. Can J Zool 73(1):154–165. CrossRefGoogle Scholar
  46. Prathumratana L, Sthiannopkao S, Kim KW (2008) The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environ Int 34:860–866CrossRefGoogle Scholar
  47. Roberts RJ (2012) Fish pathology, 4th edn. Wiley-Blackwell, Canada. CrossRefGoogle Scholar
  48. Roberts SD, Powell MD (2003) Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.) Comp Biochem Physiol A Mol Integr Physiol 134(3):525–537. CrossRefGoogle Scholar
  49. Saber TH (2011) Histological adaptation to thermal changes in gills of common carp fishes Cyprinus carpio L. Rafidain J Scie 22:46–55Google Scholar
  50. Sabóia-Moraes SMT, Hernandez-Blazquez FJ, Mota DL, Bittencourt AM (1996) Mucous cell types in the branchial epithelium of the euryhaline fish Poecilia vivipara. J Fish Biol 49(3):545–548. CrossRefGoogle Scholar
  51. Santos KC, Martinez CBR (2014) Genotoxic and biochemical effects of atrazine and Roundup®, alone and in combination, on the Asian clam Corbicula flumínea. Ecotoxicol Environ Saf 100:7–14. CrossRefGoogle Scholar
  52. Saraiva A, Costa J, Serrão J, Eiras JC, Cruz C (2015) Study of the gill health status of farmed sea bass (Dicentrarchus labrax L., 1758) using different tools. Aquaculture 441:16–20. CrossRefGoogle Scholar
  53. Savassi LA, Arantes FP, Gomes MVT, Bazzoli N (2016) Heavy metals and histopathological alterations in Salminus franciscanus (Lima & Britski, 2007) (Pisces: Characiformes) in the Paraopeba River, Minas Gerais, Brazil. Bull Environ Contam Toxicol 96(4):478–483. CrossRefGoogle Scholar
  54. SESA (2013) Vigilância da saúde de populações expostas a agrotóxicos no Paraná - Secretária Estadual de Saúde do Paraná, Curitiba, Paraná. Accessed 15 May 2017
  55. Statsoft Inc (2005) Statistica (data analysis software system). Version 71. Accessed 8 Dec 2016
  56. Teresa FB, Casatti L, Cianciaruso MV (2015) Functional differentiation between fish assemblages from forested and deforested streams. Neotrop Ichthyol 13(2):361–370. CrossRefGoogle Scholar
  57. Trevisan R, Mello DF, Uliano-Silva M, Delapedra G, Arl M, Dafre AL (2014) The biological importance of glutathione peroxidase and peroxiredoxin backup systems in bivalves during peroxide exposure. Mar Environ Res 101:81–90. CrossRefGoogle Scholar
  58. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  59. van Dyk JC, Cochrane MJ, Wagenaar GM (2012) Liver histopathology of sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution. Chemosphere 87(4):301–311. CrossRefGoogle Scholar
  60. Yancheva V, Velcheva I, Stoyanova S, Georgieva E (2016) Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review. Appl Ecol Environ Res 14:47–75. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mayara Pereira Neves
    • 1
    • 2
  • João Paulo de Arruda Amorim
    • 3
  • Rosilene Luciana Delariva
    • 4
  1. 1.Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Centro de Ciências Biológicas e da SaúdeUniversidade Estadual do Oeste do ParanáCascavelBrazil
  2. 2.CCBS, Universidade Estadual do Oeste do ParanáCascavelBrazil
  3. 3.Centro de Ciências Biológicas e da SaúdeUniversidade Estadual do Oeste do ParanáCascavelBrazil
  4. 4.Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Conservação e Manejo de Recursos NaturaisUniversidade Estadual do Oeste do ParanáCascavelBrazil

Personalised recommendations